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Tree biomass plays an important role in sustainable management and in estimating forest carbon stocks. The 
objective of this study was to select the best model for measuring stem biomass of Acacia auriculiformis in the 
study area. Data from five hillocks and 120 individual trees from each hillock were used in this study. Twelve differ-
ent forms of linear, power and exponential equations were compared in this study to select the best model. Two 
models (VI and XI) were selected based on R 2, adjusted R 2, the Akaike information criterion, F-statistics and the five 
assumptions of linear regression. Model VI was discarded based on the Durbin-Watson value of autocorrelation of 
the residuals, then the ARIMA (2, 0, 1) model was used to remove the autocorrelation from the model and the final 
bias-corrected model XI was derived. The model was validated with a test data set having the same range of DBH 
and stem height of the training data set on the basis of linear regression, Morisita’s similarity index, and t-test for 
mean difference between predicted and expected biomass. A comparison between the best logarithmic and non-lin-
ear allometric model shows that the non-linear model produces systematic biases and overestimates stem biomass 
for larger trees. The overall results showed that the bias-corrected logarithmic model XI can be used efficiently for 
estimating stem biomass of A. auriculiformis in the northeastern region of Bangladesh.
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High levels of carbon dioxide are one of the major threats 
to the Earth where climate change is concerned. Carbon 
dioxide can be released into the Earth’s atmosphere either 
by combustion of fossil fuels or by removal/transformation 
of biomass through deforestation. Climate change during 
the last decades has increased the need for information on 
the amount of forest biomass in different regions for climate 
policy definition. This requires reliable estimation of carbon 
pools in forest ecosystems. The estimation of above- and 
below-ground biomass pools is of great importance for 
the characterisation of structure and function of ecosys-
tems. Quantitative information on biomass helps not only 
to understand energy accumulation within forest ecosys-
tems (Chave et al. 2005) but also serves as an ecological 
indicator for sustainability. These estimates can also help 
to assess forest productivity, carbon pools, and carbon 
sequestration in biomass components. The determina-
tion of aboveground tree biomass helps to ensure sustain-
able planning of forest resources, and foresters apply 
different methods to obtain such estimations (Zianis 
and Mencuccini 2004). For scientific purposes, standing 
biomass is a fundamental variable in several ecological 
and ecophysiological models. Estimation of aboveground 
biomass is an essential aspect of studying carbon stocks, 
and the effects of deforestation and carbon sequestra-
tion on the global carbon balance. It also provides valuable 
information for many global issues. It can also be a useful 
measure for comparing structural and functional attributes 
of forest ecosystems across a wide range of environmental 

conditions (Brown et al. 1989). Most of the studies 
estimating aboveground biomass concentrate on stem 
biomass because it constitutes around 83% of the total 
aboveground biomass, and the biomass of tree compart-
ments (leaves, reproductive parts, twigs, branches, trunks 
and prop roots) constitutes the remainder (Zhou and 
Hemstrom 2009).

Since measuring tree biomass in the field is extremely 
time consuming and potentially limited to a small tree 
sample size, rapid and easily implementable methods are 
needed for the assessment of stem biomass. Although the 
destructive (direct) method of biomass estimation is more 
precise than the non-destructive (indirect) method, it is 
very time consuming, labour intensive, eco-unfriendly and 
depends on very small samples. That is why allometric 
equations and theoretical relationships for estimating stem 
biomass, based on non-destructive methods, have been 
gaining popularity over the last two decades. 

For the development of an allometric equation, empirical 
relationships between stem biomass and some predic-
tive biometric variables (most frequently: DBH and height) 
are used (Curtis 1967, Zianis and Mencuccini 2004). The 
most commonly used forms of allometric functions are 
polynomials, power and their combinations. Polynomials 
have the disadvantage that their shapes are not biologi-
cally interpretable. The power function (y = axb) form is 
widely used in biological sciences particularly for tree 
biomass estimation (Ketterings et al. 2001, Niklas 2006). 
Traditionally, allometric models are developed by fitting a 
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linear relationship between log-transformed diameter and 
biomass data. As opposed to the traditional approach, 
non-linear models are increasingly fitted directly to untrans-
formed diameter and biomass data (Mascaro et al. 2011). 
Although the log-transformed linear equation is mathemati-
cally equivalent to the power equation, they are not identical 
in the statistical sense (Zar 1968). Moreover, fitting linear 
models on log-transformed data leads to results that are 
biased and misleading. Such models operate in geometric 
rather than arithmetic space and the statistical analysis 
should be performed on the original scale (Packard and 
Boardman 2008). In this context, the non-linear approach 
may be favoured in part because it avoids the need 
for transformation and back transformation. However, 
in practice, the default non-linear technique assumes 
homogeneity of errors that cannot be safely assumed with 
most allometry data. Ideal tree allometric data are strongly 
heteroscedastic and exhibit increasing variation in biomass 
with increasing diameter. When non-linear fitting techniques 
are applied without accounting for heteroscedasticity, the 
resulting models may include substantial biases even while 
maintaining high r 2 and low mean square errors. Moreover, 
fitting non-linear biomass allometry models assuming 
additive errors can produce systematic biases in estimates 
for smaller diameter trees (Mascaro et al. 2011). However, 
many allometric characteristics of organisms are multipli-
cative by nature and thus fitting models to log-transformed 
data is perfectly acceptable because accounting for propor-
tional rather than absolute variation is most important 
(Kerkhoff and Enquist 2009).

To cope with the continuous population pressure and 
increasing demands for timber and fuel wood, Acacia 
auriculiformis was introduced to Bangladesh from Australia 
during the 1980s (Das and Alam 2001). It is a fast-growing, 
short-rotation and nitrogen-fixing species that can provide 
moderate graded timber and fuel wood. Considering its 
performance, A. auriculiformis has been planted all over the 
country including road verges and denuded hills. Therefore, 
the accurate estimation of its stem biomass is crucial for 
many applications, from the commercial exploitation of timber 
to the global carbon cycle, which requires the development 
of an allometric equation. We can use a national or regional 
protocol for estimating biomass of this species but site- and 
species-specific equations are preferred because different 
species may differ substantially in their architecture and 
wood properties. This may propagate erroneous estima-
tion of the biomass. The allometric biomass equation of this 
frequently planted species is virtually unavailable. With the 
current trend of carbon trading for the financial interest of 
Bangladesh, the accuracy in biomass estimation is more 
than an academic interest.

A substantial portion of the total afforested area (16%) 
is located in the north-eastern region of Bangladesh. 
Although there is no scientific record yet, our experience 
is that A. auriculiformis covers a considerable portion of 
the forest cover of this region. It is frequently planted in 
home gardens, next to roads, on institutional premises, and 
on bare forest lands. Shahjalal University of Science and 
Technology (SUST) is the largest educational institute of the 
north-eastern region of Bangladesh. It is a green campus 
enriched with a diversity of more than 30 tree species 

dominated by A. auriculiformis. The main goal of our study 
was to develop an allometric equation for A. auriculiformis 
that will help to estimate stem biomass of the species 
planted in the areas that fall within the same microclimatic 
zone of SUST, Bangladesh.

Materials and methods

Study area
The study was conducted at SUST, Sylhet, which is 
located between 24.8917° N and 91.8833° E, in the 
north-eastern region of Bangladesh (Figure 1). Its area 
is 129.5 ha. It falls within the monsoon climatic zone 
with annual average highest temperatures of 23 °C and 
average lowest temperature of 7 °C. Mean annual rainfall 
is 3 334 mm (SCC 2011). This humid subtropical climate 
supports diverse trees. The geological formation of this 
area dates from the Pleistocene era and the soil type is 
slightly acidic (Banglapedia 2006). The five hillocks of the 
campus are widely planted with a number of tree species, 
mostly with A. auriculiformis because of its ability to grow 
on very poor soil. It is a tropical arborescent species 
native to northern Australia and southern New Guinea. It is 
widely planted in different plantation forests in a number of 
countries with tropical environments (Sedgley et al. 1992). 
At SUST, most of the A. auriculiformis are mature with an 
average DBH of 26.17 cm and stem height of 4.29 m. The 
heartwood, which is yellowish-brown in colour, occupied 
an average 76–85% of the cross-sectional area. The wood 
is moderately hard and moderately dense, with shallowly 
interlocked grain and medium texture. Wood structure is 
diffused porous. In the Indian plantations mean moisture 
content of 8- to 13-year-old A. auriculiformis trees is 
48.67% (Shukla et al. 2007). 

Field data collection
For the study, the individual trees were systematically 
sampled sequentially following predesigned transect-lines. 
A total of 600 individuals (120 per hillock) of A. auriculi-
formis were selected, and DBH (cm), stem height (m), and 
wood samples were collected from these trees. A total of 
13 trees at each 50-tree interval were selected for measure-
ment of the form factor. For estimating the wood density, 
sample cores were collected to a depth of half the DBH 
(1.37 m) using an increment borer. Sunnto Clinometer, 
tree caliper, and Haga altimeter were used for measuring 
stem height, DBH, and form factor respectively. Data of 
DBH (cm), height (m), form factor, and wood samples from 
an additional 17 trees were collected and used as a test 
data set for validating the models. All the collected wood 
samples were measured in the field for their fresh weights, 
and oven-dried weights were taken after drying them in 
105 °C for 72 h.

Data analysis
Procedure of stem biomass estimation
Wood density (ρ) was calculated following King et al. 
(2006):

samplewoodfreshtheofvolume
sampletheofmassdryoven
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The stem biomass was estimated following King et al. 
(2006):

HD2

4
ffSB

where SB = stem biomass (kg), ff = form factor, defined as 
the ratio of the volume of the tree to the volume of a cylinder 
with the height and DBH of the tree, ρ = wood density 
(kg m−3), D is the diameter at breast height (cm), and H is 
the stem height (m).

Model development and evaluation
Among the different predictive biometric variables, we 
selected the most frequently used variables, i.e. DBH, stem 
height, and their combinations. While fitting these variables 
in the regression models considering ‘stem biomass’ as a 
response variable, we tested them for linear, power and 
exponential regression equations. The following 12 models 
were tested to find the best allometric relationship between 
the response and predictors (Table 1).

The following five regression assumptions were used to judge 
the consistency of the models (Robinson and Hamann 2011):

the linear model captures the relationship(1) 
error terms are independent(2) 
error terms have constant variance(3) 
error terms are normally distributed(4) 
the sample represents the population from which it was (5) 

drawn. 
Diagnostic plots were used to check these regres-

sion assumptions, except for assumption 2. The Durbin-

Watson (d value) test for autocorrelation and a diagnostic 
plot (residual vs previous residuals) were used to check 
assumption 2. In addition to the above assumptions, R 2, 
adjusted R 2, F-statistics, the Akaike information criterion 
(AIC) and d values were used to select the best model. 
There was a good probability of having serial autocorre-
lation within the residuals of the best models, based on 
the assumptions and all criteria except assumption 2. 
Therefore, if a model should show serial autocorrela-
tion among the residuals, we would apply Autoregressive 
integrated moving average (ARIMA) regression models. 
Predictions based on ARIMA models comprise the following 
stages (Cryer and Chan 2008):

Table 1: Different models used in this study

Model 
no. Structure

I Stem Biomass (kg) = a + b * DBH (cm)
II Stem Biomass (kg) = a + b * DBH (cm) + c * Stem Height (m)
III Stem Biomass (kg) = a + c * Stem Height (m)
IV ln(Stem Biomass (kg)) =  a + b * ln(DBH (cm))
V ln(Stem Biomass (kg)) =  a + c * ln(Stem Height (m))
VI ln(Stem Biomass (kg)) =  a + b * ln(DBH (cm)) + c * ln(Stem Height (m))
VII ln (Stem Biomass (kg)) = a + b * (DBH (cm))
VIII ln (Stem Biomass (kg)) = a + c * (Stem Height (m))
IX ln (Stem Biomass (kg)) = a + b * (DBH (cm)) + c * (Stem Height (m))
X Stem Biomass (kg) = a + b * (DBH (cm) * Stem Height (m))
XI ln(Stem Biomass (kg)) = a + b * ln ((DBH (cm) * Stem Height (m))
XII ln (Stem Biomass (kg)) = a + b * ((DBH (cm) * Stem Height (m))

Figure 1: Map of the study area (source of lefthand map: Banglapedia 2006)
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model identification• 
parameter estimation• 
diagnostic checking.• 
We completed the three steps with the forecast package 

version 2.19 for R (Hyndman 2011). For model identification 
the auto.arima code was used. This procedure returns the 
best ARIMA model according to either the AIC, corrected 
AIC or Bayesian information criterion value. The program 
conducts a search over the possible model within the order 
(p, d, q) of constraints provided where, p is the number 
of autoregressive terms, d is the number of non-sea-
sonal differences, and q is the number of lagged forecast 
errors. After selecting the best order (p, d, f), the Arima 
code estimates the parameters (intercept and slope) with 
other related statistics. The tsdiag code was used to draw 
diagnostic plots for the desired model.

For model identification we used the power and exponen-
tial equations, which were transformed into their natural 
logarithmic (ln) equivalent of the usual allometric forms. 
Parameters in the original allometric equations (power and 
exponential) were estimated by regressing ln(stem biomass) 
on ln(predictors) and then back-transforming them to the 
arithmetic scale (Zar 1968, Smith 1984). There is an inherent 
bias in this process that detracts from the accuracy of associ-
ated predictions. For correcting this bias from the estimation 
of the model, we multiplied the obtained result by eε, where 
ε is the random error term. The regression residuals are 
normally distributed (based on normal Q-Q plot) and ε was 
obtained from the following equations (Newman 1993):

2
regressionthefrom(MSE)errortheofsquareMean

3
ˆlnln

3MSE 1
22

1
2

N
YYe

N
e N

i iii
N
i i

where ei
2 = regression residuals from the i th data pair 

squared, and N = total number of pairs.
The performance of the relevant selected model was 

assessed using a test data set containing DBH (cm), stem 
height (m), and stem biomass (kg) (n = 17).

Model validation
For validating the models, we regressed the observed stem 
biomass (SBt) of the test data against the predicted stem 
biomass data (        ) as: SBt = a + b ×         . To judge the consist-
ency of the model, we conducted a t-test to measure whether 
the observed intercept and slope differed significantly 
from the expected intercept and slope (Amaro 1998). As a 
measure of distance between observed and predicted values, 
we calculated Morisita’s (1959) dissimilarity index (DM): 
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where yi = observed stem biomass of the test data and 
y pi  = predicted stem biomass 

Note that 1 − DM is essentially Morisita’s measure of niche 
overlap or similarity (Smith and Rose 1995). Moreover, to 
assess the performance of the models at the stand level, 
we conducted a Welch two-sample t-test to find out if there 
was any significant mean difference between the observed 
and predicted stem biomass of A. auriculiformis.

We developed a best fit non-linear least square model 
using the nls code of R (R Development Core Team 2011) 
for the stem biomass. This model was then compared with 
the relevant logarithmic model with bias correction. 

Results and discussion

The range of DBH and stem height data for the model 
validation data set fell within the boundary of training data 
set (Table 2), so it could be used for proper model valida-
tion. From Figure 2, it was evident that both DBH and stem 
height of the training data set were not normally distrib-
uted (for DBH: Shapiro-Wilk p = 4.49e-07; for stem height 
p = 5.999e-05 at α = 0.05). Figure 3 shows that the test 
data set was normally distributed (for DBH: Shapiro-Wilk 
p = 0.496; for stem height p = 0.318 at α = 0.05).

Model development
For the development of the best model, we tried 12 different 
equation forms. Some of the combinations of independent 
variables were univariate and some were bivariate. For 
the univariate models we estimated only intercepts (a) and 
regression coefficients (b or c), but for the bivariate models 
we estimated regression coefficients of the respective 
explanatory variables along with their intercepts (Table 3).

Although the estimates showed that all intercepts and 
regression coefficients for all the models were significant, 
the values of R 2, adjusted R 2, AIC and F-statistics indicated 
that models VI and XI were better than the others. Between 
these two models, it might seem that model VI was better 
than model XI. To avoid any confusion, we checked the five 
regression assumptions to select the best model. A good 
model should conform to all valid statistical assumptions 
(Robinson and Hamann 2011).

Assumption 1: The linear model captures the relationship
In order to check whether the linear model captures the 
relationship, we plotted regression residuals versus fitted 
value with a smooth curve superimposed on it (top left panel 

Variables N Minimum Maximum Mean SD Skewness Kurtosis
DBH (cm) 600 10.10 54.70 26.18 8.20 0.483 –0.085
Stem height (m) 600 1.30 8.40 4.30 1.33 0.302 –0.199
DBH validation (cm) 17 17.30 33.80 26.44 4.54 –0.551 –0.175
Stem height validation (m) 17 2.70 6.30 4.76 1.05 –0.329 –0.982

Table 2: Descriptive statistics for the different variables of Acacia auriculiformis at SUST Campus

SBt
ˆSBt

ˆ
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of Figures 4 and 5). In these figures we looked for evidence 
of curvature and outliers. Figure 5 shows a compara-
tively smooth straight line compared to Figure 4. A bit of 
curvature in the Figure 4 indicates a possible substantial 
local bias in the model, which contradicts the first assump-
tion above. According to the assumption 1, model XI was 
judged to be better than the model VI. These residuals were 
not standardised, therefore the possibility of local bias of 
model VI alone could not prove it as invalid (Robinson and 
Hamann 2011).

Assumption 2: Error terms are independent
If any model does conform to assumption 2, then its 
standard error will be wrong and the test and confidence 
interval will be unreliable. The basic diagnostic plot cannot 
check assumption 2 because it doesn’t have the option to 
check the independence of the error terms. To check this 
assumption, the Durbin-Watson test for autocorrelation 
among the residuals showed that for model VI d = 0.1194 
(autocorrelation = 0.94) and for model XI d = 1.425 
(autocorrelation = 0.285). For two independent variables, 
n = 600 and α = 0.01; the critical lower and upper limits 
of d were 1.50 and 1.58, respectively. Thus, we could say 

that model VI was more positively correlated than model XI 
(Figure 6). However, the fact was that the residuals of 
model XI were also slightly positively correlated. This 
problem would need attention.

Assumptions 3 and 4: The error terms have constant 
variance and are normally distributed
We plotted the normal Q-Q plot (the top right panel of 
Figures 4 and 5) of the standardised residuals against the 
normal distribution in order to check whether the error terms 
have constant variance and were normally distributed. It 
was clear that all points in Figure 4 were not in a straight 
line. Departures from a straight line in this plot indicate the 
non-normality of the residuals or non-constant variance, 
or both (Robinson and Hamann 2011). According to large-
sample theory, modest departures from a straight line are 
often acceptable, which is found in the case of Figure 5. 
Moreover, to check assumption 3, we plotted the square root 
of the absolute residuals against the fitted values, along with 
a smooth line (the bottom left panel of Figures 4 and 5). In 
this plot, deviations from a horizontal line signify heteroske-
dasticity, which was a violation of the third assumption and 
is more evident in Figure 4 than in Figure 5. 
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Figure 3: Diameter at breast height (DBH; cm) and stem height (m) distributions of the validation (test) data set used in the study

Figure 2: Diameter at breast height (DBH; cm) and stem height (m) distributions of the training (model fitting) data set 
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Model a    b   c R 2 Adjusted R 2  AIC F-statistic
I −157.3487*** 10.5088*** – 0.8048 0.8045 6205.033 2465
II −99.742*** – 50.632*** 0.4927 0.4919 6778.014 580.8
III −210.2582*** 8.5299*** 24.3780*** 0.8905 0.8901 5860.287 2427
IV −3.62978*** 2.51050*** – 0.8864 0.8862 223.3344 4667
V −1.57869*** – 2.03508*** 0.6076 0.6069 967.2375 925.8
VI −3.296178*** 1.959321*** 1.022794*** 0.9971 0.9971 –1985.766 1.044e+05
VII 1.919372*** 0.096303*** – 0.8402 0.8399 428.294 3143
VIII 2.32084*** – 0.49343*** 0.5817 0.581 1005.493 831.7
IX 1.3493404*** 0.0749822*** 0.2626409*** 0.9638 0.9637 –460.7517 7947
X −56.20103*** 1.47551*** – 0.9294 0.9293 5595.025 7869
XI −2.41952*** 1.48460*** – 0.9674 0.9673 –525.6211 1.775e+04
XII 2.93946*** 0.01273*** – 0.8601 0.8599 348.2685 3677
Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’

Table 3: Estimated parameters of the different models tested in the study
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Figure 4: Diagnostic plots for model VI

Assumption 5: The sample represents the population 
from which it was drawn 
The bottom-right panel of Figures 4 and 5 shows a plot of 
the leverage of the observations against the standardised 
residuals, which are the two components of Cook’s distance. 
Cook’s distance >1 contradicts assumption 5 (Robinson 
and Hamann 2011). It is evident from both figures that the 

sample represents the population from which it was drawn. 
However, Figure 5 supports assumption 5 more appropri-
ately than Figure 4.

Fixing the problems of autocorrelation in model XI
The problems with autocorrelation can be fixed in two ways: 
(1) by adding new variables to the model (usually a lurking 
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variable), and (2) by using ARIMA instead of the least 
squares regression procedure (Cryer and Chan 2008). In 
our case, we used the most important regressors (DBH and 
height) in our model, therefore it was logical to go for the 
second option. We tested all possible combinations of order 
(p, d, q) and found the ARIMA (2, 0, 1) model with non-zero 
mean as the best option. Using this model we obtained 
estimates for the parameters of model XI (as shown in 
Table 4) with the associated statistics. 

Table 4 showed that the ARIMA (2, 0, 1) model was better 
than the LSR model and had corrected the autocorrelation 
problems of model XI (1.50 < dc < 1.58) (Figures 7 and 8). 

Therefore, the final model is:
 

SB = exp (−2.3807 + 1.4765 × ln(DH))
or SB = 0.092486 × (DH)1.4765

Bias correction = e‘ = e0.01060398 = 1.01066
Therefore, the bias corrected model is: 

SB = 0.092486 × (DH)1.4765 × 1.01066
= 0.09347 × (DH)1.4765

Model validatation
Figure 9 shows a comparison of actual vs predicted 
values using the test data set. For our model, we obtained
‘a’ =  4.33290, ‘b’ = 0.94398, adjusted R 2 = 0.9864. A t-test 
result showed that there was no significant difference 
between the expected intercept (0) and observed intercept 
(p = 0.0616, α = 0.05), and the expected slope (1) and 
observed slope (p = 0.3032, α = 0.05). This means that 
there was no significant difference between the predicted 
and observed stem biomass.

Regression Intercept SEI Slope SEs AIC Durbin-Watson (d)
LSR −2.41952 0.0519 1.4846 0.01114 −525.62 1.425
ARIMA −2.3807 0.0539 1.4765 0.011 −600.02 2.0024

Table 4: Precision of model XI using the ARIMA (2, 0, 1) model in comparison with the least squares method (LSR)

0 10 20

Auto Correlation Function of residuals

Standardised residuals

0.4

0.8

0.0

0.4

0.8

0.0

LAG

LAG

TIME

p values for Ljung-Box statistic

A
C

F
p 

VA
LU

E

−2

0

4

2

5 15

2 4 6 8 10

25

0 100 200 300 400 500 600

Figure 7: Diagnostic plots for the ARIMA (2, 0, 1) model XI
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Morisita’s (1959) index of similarity (1 − DM) was 
0.9989157 (almost 1), which indicated that the model can 
predict stem biomass, outside the training data, effectively. 

We know that non-destructive theoretical biomass 
models are used to predict the biomass of a stand and 
not of a single tree (IPCC 2003). That is, for evalution of 
a model, it is essential to judge whether the mean differ-
ence between the observed and predicted stem biomasses 
are significant or not. A Welch two-sample t-test showed 
that there was no significant difference between the mean 
observed  and predicted stem biomasses (t = 0.1429, 
p-value = 0.8873). 

Comparison between best fitted nonlinear and the bias 
corrected logarithmic models
For contrasting linear and nonlinear approaches, we 
first developed a best fit non-linear regression model for 
estimating stem biomass from the candidate models used in 
logarithmic modeling. The estimated parameters of the best 
fit non-linear model (power function) is given in Table 5.

The adjusted R 2 and AIC values for the non-linear 
allometric model were 0.95 and 5374.95, whereas for the 
logarithmic model they were 0.97 and −525.62. Moreover, 

from Figure 10 it is evident that the non-linear allometric 
model has the tendency to overestimate stem biomass with 
an increase in DBH or height. These facts indicate that the 
logarithmic model can predict the variation in stem biomass 
more accurately than the non-linear model. The findings of 
Mascaro et al. (2011) also support our findings.

This means that the logarithic model can be used 
effectively at the stand level for estimation of stem biomass 
of A. auriculiformis quickly, accurately and non-destructively.

Conclusion

In this study, different combinations and forms of equation 
of diameter and stem height were used to select the best 
model for measuring stem biomass of A. auriculiformis. 
Moreover, a comparison between the best fitted logarithmic 
and non-linear allometric models was made. Fitting a 
non-linear biomass allometric model produces systematic 
biases in estimates for larger DBH/height trees. This can 
lead to a huge overestimation of biomass at the landscape 
level if they are based on stand-level data sets dominated 
by large trees. Since the models were compared based on 
the same assumptions, the final model can be used with 
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confidence to estimate the stem biomass of A. auriculi-
formis in the north-eastern region of Bangladesh. The final 
model can be used within a DBH range of 10–55 cm and a 
stem height range of 1–9 m. This model will be very helpful 
to the forest manager for decision-making as the species is 
well-acclimatised throughout the country. 
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Parameters Estimate SE t- value p-value
Intercept 0.092467 0.007115 13 <2e-16 ***
Power 1.479986 0.014507 102 <2e-16 ***
*** Significant at α = 0.00

Table 5: Estimated parameters for the best fit nonlinear model XI
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