

Proceeding of the training on field data collection for allometric equation development in Bangladesh

Bangladesh Forest Department 17 – 24 May 2016

Food and Agriculture Organization of the United Nations The Forest Department of Bangladesh leads actions to improve forest management and conservation, adopting forward thinking, innovative approaches in its management of approximately 1.55 million hectares of land across the country.

In 2015, the Forest Department began a process to establish a National Forest Inventory and Satellite Land Monitoring System for improved forest and natural resource management. The process supports national objectives related to climate change mitigation and provides information in support of the UN-REDD programme aimed at Reducing Emissions from Deforestation and Forest Degradation (REDD+). The process also addresses domestic information needs and supports national policy processes related to forests and the multitude of interconnected human and environmental systems that forests support.

The activities implemented under the Bangladesh Forest Inventory process are collaboration between several national and international institutions and stakeholders. National partners from multiple government departments and agencies assist in providing a nationally coordinated approach to land management. International partners, including the United Stated Agency for International Development (USAID) and the Food and Agriculture Organization of the United Nations (FAO) are supporting the development of technical and financial resources that will assist in institutionalizing the process.

The results will allow the Forest Department to provide regular, updated information about the status of trees and forests for a multitude of purposes including for assessment of role of trees for firewood, medicines, timber, and climate change mitigation.

CONTACTS:

Md. Zaheer Iqbal

National Project Coordinator Bangladesh Forest Department Email: <u>z.iqbal60@gmail.com</u>

Matieu Henry Chief Technical Advisor Food & Agriculture Organization of The United Nations Email: matieu.henry@fao.org

Suggested Citation: **Hossain, M.** 2016. Proceeding of the Training on Field Data Collection for Allometric Equation Development in Bangladesh. 17-24 May 2016, Dhaka, Bangladesh Forest Department, Food and Agriculture Organization of the United Nations, Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh.

Disclaimer

This report is designed to reflect the activities and progress related to the project GCP/GD/058/USAID "Strengthening National Forest Inventory and Satellite Forest Monitoring System in support of REDD+ in Bangladesh". This report is not authoritative information sources – it does not reflect the official position of the supporting international agencies including USAID or FAO and should not be used for official purposes. Should readers find any errors in the document or would like to provide comments for improving its quality they are encouraged to contact one of above contacts.

Executive Summary

Assessment of forest biomass and volume are obvious for knowing the forest stocking, productivity, nutrient cycling and budgeting, carbon stocking and predicting future status of forest resources, which are important consideration for the sustainable management of forest. Tree biomass and volume can be measured from both destructive (clear-cut) and non-destructive (allometric equation) methods. Allometric method is frequently used for estimating the biomass and volume of forest plant species, which is the most powerful tool of measurement. The use of appropriate equations for biomass and volume estimation will contribute to improve the accuracy in forest resource assessment and also guide the forest policies and its management.

Development of allometric equations for biomass and volume requires extensive planning, field work (sampling of forest within each forest strata, sampling of plots within each forest, sampling of plants within each plot; measurement of standing tree dimensions; felling of sampled plant; separating and weighing of different plant parts; sub-sampling of different plant parts for further assessment and data recording), sample analysis in the laboratory, and data compilation and analysis. Most of the cases, these activities are destructive, difficult and expensive to repeat. Consistency in field data collection for the development of allometric equation is vital for quality control and accuracy of the derived equations.

FAO is currently assisting Bangladesh Forest Department (BFD) in National Forest Inventory (NFI) activities and also to establish a national forest monitoring system. As a part of these activities, FAO tries to strengthen national capacities of BFD in field data collection for the development of allometric equation which was an important project activity. Total ten participants (all male) attended in the training.

Contents

Exe	cutive	e Sum	nary	3
	Intro	oducti	٠ n	6
			of the training programme	
	3.1	Inaug	uration session	7
	3.2	Overv	iew of the training programme	8
4.	Reco	omme	ndation and next steps	. 15
Ар	pendi	(1 .	Agenda	. 17
Ар	pendi	¢ 2.	Participant List	. 18
Ар	pendix	c 3.	Evaluation of the training	. 19

List of Figures

Figure 1: Measurement of dendrometric parameter by the participant	9
Figure 2: Prescribed data entry sheet for individual tree	9
Figure 3: elling and bucking operation by the participants in the field	10
Figure 4: Separation of plant parts	10
Figure 5: Measurement of length and diameter of each log section	10
Figure 6: Fresh weight taking activities	11
Figure 7: Fresh weight taking activities	11
Figure 8: Identification codes for fresh weight of subsamples	12
Figure 9: Data entry form for fresh weight of subsamples to calculate the fresh weight to	oven-dry
weight conversion ratio	12
Figure 10: Collection of subsample from field	13
Figure 11: Inspiring activities by Dr. Liam Costello in the field	13
Figure 12: Certificate given ceremony at Tangail Forest Division	15

1. Introduction

In most of the cases, the assessment of tree volume, biomass or carbon stocks is made using tree allometic equations and dendrometric field measurements. Allometry refers to the statistical relation between two size characteristics of individuals in a population. Therefore a statistical relation can be developed between parameters easy to measure tree characteristics (i.e. diameter, height or density) and difficult to measure variables such as biomass or volume. Consequently, costly and destructive measurements can be limited to a sample of trees and the results can be extrapolated to all trees in a given area. Appropriate allometric equation use is required to improve the quality of estimates for a multitude of purposes including timber volume, wood energy biomass, carbon stocks etc., and to support forest policies for better management.

The selection and development of inappropriate allometric models is the main source of error in estimating biomass and volume of a particular species. Development of allometric equations for biomass and volume requires extensive planning, field work (sampling of forest within each forest strata, sampling of plots within each forest, sampling of plants within each plot; measurement of standing tree dimensions; felling of sampled plant; separating and weighing of different plant parts; sub-sampling of different plant parts for further assessment and data recording), sample analysis in the laboratory, and data compilation and analysis. Most of these activities are destructive, difficult and expensive to repeat. Consistency in field data collection for the development of allometric equation is vital for maintaining quality and accuracy of the derived equations.

A series of capacity-building exercises have been organized to enhance national capacity of the national institutions on various elements of national forest monitoring including development of data management system, data management and analysis for the NFI inventory data, assessment of GHG, R software for allometric model selection, management and analysis of forest data, quality assurance and control of the data. At the same time, several activities like database of verified allometric equations for biomass and volume, national consultation workshop on allometric equations, development of field measurement protocol on tree allometric equation for estimating above-ground biomass and volume have been conducted to find out the gaps and needs for further works have also been identified.

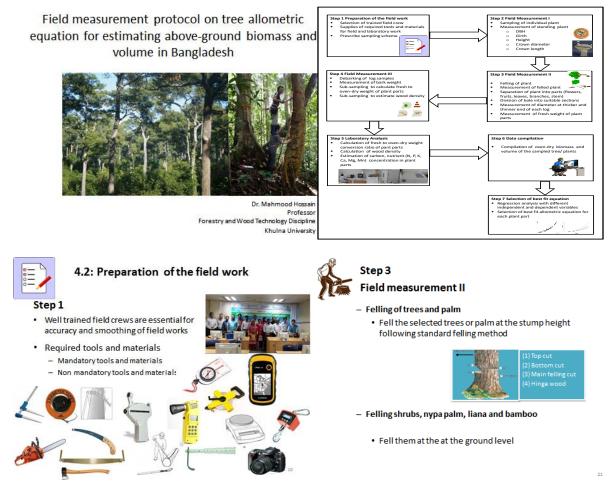
Allometric equations can be derived more accurately by following a standard field measurement procedure. Some errors in development of allometric equations are associated with the use of different methods of field measurement, sample processing, data compilation, statistical analysis, use of different units of measurement. To overcome these uncertainties, a training programme on field data collection for the development of biomass and volume allometric equations was jointly organized by FAO, Bangladesh Forest Department and Khulna University from 17 to 24th May 2016 at Tangail Forest Division. The outputs of this training will contribute to support the effort to National Forest Inventory in Bangladesh and implementation of the national forest monitoring system.

2. Objectives

The general objective of this training was to strengthen the national capacities in field data collection for the development of biomass and volume of allometric equation for the implementation NFI and future monitoring of forest resources.

The specific objectives were as follow:

- To discuss all the steps involved in developing allometric equation for trees
- To give field training on use of different instruments used in field data collection for the development of allometric equation
- To give field training on measurement of different dendomectric variables of trees
- To give field training on felling, debranching, bucking of a tree and separating different parts of felled trees (Leaves, smaller branches, Bigger branches, stems)
- To give field training on the measurement of fresh biomass of plant parts (Leaves, smaller branches, Bigger branches, stems) and measurement of diameter at thicker and thinner end of each section of stem and bigger branch as well as bark thickness at each end of each stem and bigger branch
- To give training on data recording in prescribed forms as given in "field measurement protocol on tree allometric equation for estimating above-ground biomass and volume in Bangladesh"
- To give field training on sub-sampling of different parts (Leaves, smaller branches, Bigger branches, stems) for fresh to oven-dried conversion weight
- To give field training on processing and transporting sub-samples of different parts (Leaves, smaller branches, Bigger branches, stems)
- To test the "field measurement protocol on tree allometric equation for estimating above-ground biomass and volume in Bangladesh" for its finalization
- To derive allometric equations of *Acacia auriculiformis* and *Acacia mangium* from the collected field data


3. Summary of the training programme

3.1 Inauguration session

Dr. Mariam Akhter, Assistant Conservator of Forest and Forestry Officer of FAO Bangladesh delivered her welcome speech at the inaugural session. Mr. Luca Birigazzi, FAO discussed the different steps involved in the field data collection for the development of allometric equation. Dr. Matieu Henry, Chief Technical Advisor discussed the importance of this training programme and technical assistance provided by the FAO for this training programme. Mr. Mozaharul Islam, Conservator of Forests and National Project Coordinator, was the Chief Guest of the inaugural session. He highlighted important of field training on field data collection for the development of allometric equation and the importance of allometric equation in assessing forest stock.

3.2 Overview of the training programme

The first day (17th May) of the training programme, Dr. Mahmood Hossain, Khulna University presented the field measurement protocol on tree allometric equation for estimating above-ground biomass and volume in Bangladesh to the participants. He discussed all the necessary steps during the field work and field data collection. He also discussed the different measurement techniques for standing trees (Diameter at 0.3 m, DBH, total height, bole height, crown length, crown diameter) and felling of trees (total height, bole height), precaution during felling of trees, felling and bucking operation, separation of plant parts, weighing of plant parts and data recording procedure. Mr. Luca Birigazzi, FAO demonstrated use of different instruments to measure the dendrometric parameter of trees.

2nd day (18th May) was field visit to Jharka beat of Dholapara range under Tangail Forest division to find out and fix the felling operation of *Acacia auriculiformis* and *Acacia mangium* from social forestry wood lot plantation. A detail planning of field activities was done with participant for felling and measurement of *A. auriculiformis*. Next two and half days (19th to half of 21st May), participants were engaged for felling and measuring *A. auriculiformis* and remaining days were involved for felling and measuring *A. mangium*. The activities during the field work have been briefly discussed as follows.

Dr. Mahmood Hossain and Mr. Mohammad Raqibul Hasan Siddique, Khulna University conducted the reconnaissance survey of the woodlot to get a range of DBH of the desired species and to select places for weighing tree parts. The range of DBH from 5 to 30 cm was divided into 5 DBH classes keeping 5 cm from interval. Representative number of individuals (preferably 6 from each class) were selected considering good form and marked with number (1, 2, ... 30) for next step. Geographical coordinate of each individual tree with its dengrometric parameters were recorded before felling the marked one in the following prescribed data sheet (Figures 1 and 2).

FIGURE 1: MEASUREMENT OF DENDROMETRIC PARAMETER BY THE PARTICIPANT

An	nex 1: F	ield data	form for	fresh	biomass and	d diameter me	asurement	of logs of	D.	Length	and diam	neter measu	rement of	bigger bra	inches			
individual tree							Log ID	Log lengt		Diameter with bark (ark (cm) Diameter withou		ut bark (cm)				
S	urvey da	te:									(m)	thickness (cm)	Thicker en	d Thin	ner end	Thicker er	nd	Thinner end
N	ame of t	eam lead	der:															
	ree no:																	
s.	cientific	name.																
-	ocal nam													- 1				
A	dministr	ative loca	ation:															
C	oordinat	es of the	sample	tree:					E.	Volume	and Biomas	ss ratio or rela	tionship for I	bole sample	s (If Require	d)		
			Lo	ngitud	e:	La	titude:			Log	Log	Diameter wit		Biomass		er without	bark	Biomass
			Δŀ	titude:		A:	verage slope:			ID	length	Diameter wit	n bark (cm)	with bark	Diamet	(cm)	Dark	without
-			0	induc.		~	verage slope.				(m)	Thicker	Thinner		Thicker		nner	bark
F	orest typ	es:										end	end		end	er	nd	
Α.	Measu	rement o	of tree di	mensi	on													
~																		
	Diamete DBH (cm	r at 0.3 m	(cm)								1.51							
	Total hei					Standing tree	5	lled tree	F.	Volume	and Biomas	ss ratio or rela	tionship for I	bigger brand	h samples (f Required	1)	
	Bole leng					Standing tree		led tree		Branch	Branch	Diameter	with bark	Biomass	Diamet	er without	bark	Biomass
			length (m)		Standing tree		led tree		ID	length	(0	m)	with bark		(cm)		without
		iameter (m		/				+ B)/2 =			(m)	Thicker	Thinner	1	Thicke	r Thi	nner	bark
			crown ler	igth (m)	1		- v					end	end		end	e	nd	
		hape (Anne		0()	·													
		rm (Anne)																
		no (if any)							G.	Leaf fre	sh biomass a	and leaf conta	ining smaller	branch bio	mass ratio o	r relations	hip (If F	Required)
		height (m)								Sample	no Fresh	weight of lea	ves and leaf	Fresh weig	ht of leaves	Fresh	weight	of smaller
	Buttress	width (m)									conta	ining smalle	r branches	(kg)		branche	s witho	ut leaves(kg)
	Buttress	length (m))								(kg)							
	Age (yea	r)									_							
	Eroch b	lomass		monto	of the sampl	la traa				<u> </u>	_							
ь.	Flesh	IOIIIass I	liedsure					-	н.	Eroch h	lomate of h	oof containing	cmaller bra	nchor (Rog	ulrad to act	imato fro	ch blog	nass of leaves
	SL no				weight of tree	parts (kg)		Weight (kg) of	·			or relationship						
		Bole	Leaves	Flowe	ers Fruits	Smaller	Bigger	buttress (if any)		Sample		ight of leaves		elationship	Fresh we		Fresh	weight of
						branches (<7 cm diameter)	branches (> 7 cm	(ii any)		no		f containing		sh biomass	leaves (kg		leaf	containing
						cindiametery	diameter)					oranches (kg		containing	Ratio X (FV		smalle	
											(FWLB)		smaller	branch			(kg) =	= (FWLB) -
	Total												biomass)				(LW)	
c	Longth	and diar	notor m	acura	ment of log													
·																		
	Log ID	Log	Bar		iameter with b		Diameter wi	thout bark (cm)										
		length (m)	thickn (cm		hicker end	Thinner end	Thicker end	Thinner end										
		(,	(cm	-														
		-	-				-											
		1					1											

FIGURE 2: PRESCRIBED DATA ENTRY SHEET FOR INDIVIDUAL TREE

After measuring the dendrometric parameters, the selected trees were felled at the ground level. The felled trees were delimbed, bucked and separated in parts (leaves, smaller branches, bigger branches, stems) for further processing (Figures 3 and 4). Mr. Luca Birigazzi, FAO supervised the activities of the participants.

FIGURE 3: ELLING AND BUCKING OPERATION BY THE PARTICIPANTS IN THE FIELD

FIGURE 4: SEPARATION OF PLANT PARTS

Diameter at thicker and thinner end of each section of individual tree stem and bigger branches and length of each section were measured and record in data entry form as presented earlier (Figure 5). Moreover, bark thickness at thicker and thinner ends of each stem section and bigger branches were also measured to get under bark biomass of wood.

FIGURE 5: MEASUREMENT OF LENGTH AND DIAMETER OF EACH LOG SECTION

Fresh weight of each part (leaves, smaller branches, bigger branches and stem sections) of individual felled tree was measured in the field and recorded in the prescribed data form as mention earlier. Some of the photographs of weighting activities are given below (Figure 6).

FIGURE 6: FRESH WEIGHT TAKING ACTIVITIES

Mr. Mohammad Raqibul Hasan Siddique, Khulna University has given training on debarking of stem section to get ratio of fresh weight of bark and bole. Thus, participants were estimated the fresh weight ratio of bark and stem wood, and bark and bigger branches in the field (Figure 7).

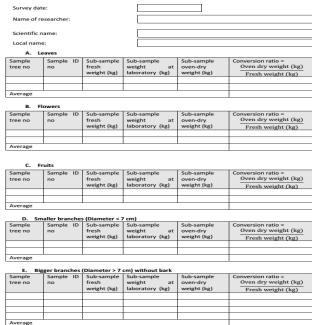


FIGURE 7: FRESH WEIGHT TAKING ACTIVITIES

Dr. Mahmood Hossain and Mr. Mohammad Raqibul Hasan Siddique, Khulna University have given field training to collect the subsamples for each part (leaves, smaller branches, bigger branches, stem without bark and bark) from the sampled tree. They also showed the procedure of giving codes to the subsamples as well to record their fresh weight in the following data form (Figures 8 and 9). Some of the photographs of collection of sub-samples are given in Figure10.

Level 1 (Plant life form)	Code	Example for code of trees	Level 2 (Plant parts)	Code for plant parts	Example of Code for fresh weight	Level 3 (Sub-sample)	Code for sub- samples	Example of code for sub-samples of plat parts
Tree	Tr	Tr1, Tr2Trn	Leaf	L	Tr1L1, Tr1L2TrnLn	Leaf	SubL	Tr1SubL1TrnSubLn
			Flower	FI	Tr1Fl1, Tr1Fl2TrnFln	Flower	SubFl	Tr1SubFl1 TrnSubFln
			Fruit	F	Tr1F1, Tr1F2TrnFn	Fruits	SubF	Tr1SubF1 TrnSubFn
			Smaller branch	Bt	Tr1Bt1, Tr1Bt2TrnBtn	Smaller branches	SubBt	Tr1SubBt1 TrnSubBtn
			Bigger branch	Bg	Tr1Bg1, Tr1Bg2TrnBgn	Bigger branches	SubBg	Tr1SubBg1 TrnSubBgn
			Dead Branch	Bd	Tr1Bd1, Tr1Bd2TrnBdn	Dead Branch	SubBd	Tr1SubBd1 TrnSubBdn
			Bole or stem	Т	Tr1T1, Tr1T2TrnTn	Bole or stem	SubT	Tr1SubT1 TrnSubTn
			Bark of bole	Ba	Tr1Ba1, Tr1Ba2TrnBan	Bark of Bole or stem	SubBa	Tr1SubBa1 TrnSubBan
			Bark of bigger branch	BaBg	Tr1BaBg1TrnBaBg	Bark of bigger branch	SubBaBg	Tr1SubBaBg1. TrnSubBaBgn
			Wood Density	WD	Tr1T1WD1TrnTnWDn	Wood Density	SubWD	Tr1T1SubWD1TrnTnSubWDn

FIGURE 8: IDENTIFICATION CODES FOR FRESH WEIGHT OF SUBSAMPLES

Annex 8: Fresh to oven-dry weight conversion ratio for sub-samples of tree parts

FIGURE 9: DATA ENTRY FORM FOR FRESH WEIGHT OF SUBSAMPLES TO CALCULATE THE FRESH WEIGHT TO OVEN-DRY WEIGHT CONVERSION RATIO

FIGURE 10: COLLECTION OF SUBSAMPLE FROM FIELD

On 22nd May, Dr. Liam Costello, FAO joined with the team in the field and inspired the participant in different activities of biomass measurement (Figure 11).

FIGURE 11: INSPIRING ACTIVITIES BY DR. LIAM COSTELLO IN THE FIELD

The participants have finished their task of training on field data collection for the development of allometric equation for two species *A. auriculiformis* and *A. mangium* 23rd May. In this training programme, they have felled 33 and 30 individual of *A. auriculiformis* and *A. mangium* respectively. The height range of *A. auriculiformis* was 9 to 22.2 m with an average of 17 m. Whereas the height range of *A. mangium* 10.5 to 26 m with average height of 17 m. Number of individual felled trees for each DBH classes are given below:

	Number of individual per species				
DBH class (cm)	A. auriculiformis	A. mangium			
5 to 10	7	6			
10 to 15	7	11			
15 to 20	8	6			
20 to 25	8	4			
25 to 30	3	4			

At the end of the day, a certificate given ceremony was organized in the field. Dr. Liam Costello, FAO was chief gust of that ceremony. He uttered that this type of field training is very much essential for the BFD people and students. Dr. Mahmood Hossain, Khulna University and Mr. Luca Birigazzi, FAO have given thanks to the Divisional Forest officer of Tangail Forest Division and other field staffs for their cordial cooperation during the field training. Dr. Mahmood also acknowledges the support of the auction holders of the woodlots during the field training and for their permission to take some subsamples of plant parts for further laboratory analysis. At the end of the speech, Dr. Liam Costello, FAO, Mr. Luca Birigazzi, FAO and Dr. Mahmood Hossain, Khulna University jointly handed over the certificate to the participant (Figure 12)

FIGURE 12: CERTIFICATE GIVEN CEREMONY AT TANGAIL FOREST DIVISION

4. Recommendation and next steps

This training was quite helpful for Forest Department personnel, researcher of Bangladesh Forest Research Institute and students of Forestry. Some observations were noted during this field training. The following recommendations are need to consider for the better field work for the development of allometric equation of biomass and volume of trees.

- 1. This type of training should be given in border scale to BFD people and students of Forestry.
- 2. Only one species should be considered at a time for field data collection.
- 3. Subsample of pant parts (leaves, smaller branches, bigger branches, stem disk and bark) should be transferred to the laboratory immediately from the field to avoid the decay loss.
- 4. Instrumental backup should be ensured in the field.
- 5. Some improvement is needed in field data collection form for the development of allometric equation of trees. These improvements are, stand characteristics (DBH range, species composition) and categories of sub-sample.
- 6. Season of the field work should be between November to April

Next step:

- Next training should be given on sample analysis in the laboratory and selection of allometric model through statistical analysis using R software
- Finalisation of the field measurement protocol based on ground destructive measurements.
- The opportunity of developing an Open Foris Survey to facilitate the field data collection using mobile and android applications will be investigated.
- Develop allometric equations using the data collected in the field Subsamples collected in the field will be measured and analyzed in the laboratory. The data will be analysed using R and the results will be organised in the form of a scientific article. The data, meta-data and the R script will be prepared with appropriate documentation to ensure it proper use by Forest Department, Forest Research Institute and other users and institutions.
- Identify the potential land area for the destructive measurement Information will be collected on available felling of social forestry trees under different forest division and

private areas to prepare a report on potential land area for the destructive measurement to develop allometric equations with different species

Appendix 1. Agenda

Training on Field Data Collection for Allometric Equation Development in Bangladesh 17th to 24th May 2016 Tangail Forest Division, Tangail

Date	Session	Resource person
17th May	Training on allometric equation	Dr. Mahmood Hossain, Khulna University
	development (preparation of the field	Luca Birigazzi, FAO
	equipment, the manual and theory)	
18th May	Training on allometric equation	Dr. Mahmood Hossain, KU
	development (going to the field)	Mr. Mohammad Raqibul Hasan Siddique, KU
19th May	Training on allometric equation	Dr. Mahmood Hossain, KU
	development (field measurements)	Mr. Mohammad Raqibul Hasan Siddique, KU
20th May	Training on allometric equation	Dr. Mahmood Hossain, KU
	development (field measurements)	Mr. Mohammad Raqibul Hasan Siddique, KU
		Mr. Luca Birigazzi, FAO
21st May	Training on allometric equation	Dr. Mahmood Hossain, KU
	development (field measurements)	Mr. Mohammad Raqibul Hasan Siddique, KU
		Mr. Luca Birigazzi, FAO
22nd May	Training on allometric equation	Dr. Mahmood Hossain, KU
	development (field measurements)	Mr. Mohammad Raqibul Hasan Siddique, KU
		Mr. Luca Birigazzi, FAO
23rd May	Training on allometric equation	Dr. Mahmood Hossain, KU
	development (field measurements)	Mr. Mohammad Raqibul Hasan Siddique, KU
		Mr. Luca Birigazzi, FAO
24th May	Training on allometric equation	Dr. Mahmood Hossain, KU
	development (travel back to Dhaka)	Mr. Mohammad Raqibul Hasan Siddique, KU
		Mr. Luca Birigazzi, FAO

Appendix 2. Participant List

ID	Name	Gender	Organization	Designation	Phone no	E-mail
1	Narottam paul	М	Forestry and Wood Technology	Student	01621484341	Narottamfwt.ku@gmail.com
			Discipline, Khulna University			
2	Subir Nandi Sarker Nayan	М	Forestry and Wood Technology	Student	01670147054	Nayan140526@gmail.com
			Discipline, Khulna University			
3	Mr. Abdullah Al Mamun	М	Bangladesh Forest Department	ACF, Sylhet Forest	01776834219	Almamun.0022@gmail.com
				Division		
4	Shakkhor Ahmed	М	Department of Forestry and	Student	01680134568	Shakkhorsust21@gmail.com
			Environmental Science, Shahjalal			
			University of Science & Technology			
5	Md. Mahmudul Hasan	М	Department of Forestry and	Student	01748136738	pabonworld@gmail.com
			Environmental Science, Shahjalal			
			University of Science & Technology			
6	Safayetur Rahman	М	Institute of Forestry and Environmental	Student	01735226062	sr.sayem@gmail.com
			Science, University of Chittagong			
7	Md. Muslim Uddin	М	Institute of Forestry and Environmental	Student	01815567995,	md.muslimuddin315@gmail.com
			Science, University of Chittagong		01911274778	
8	Mofizul Islam Khan Forhad	М	Bangladesh Forest Research Institute,	Field officer	01817771345	bfriforhad@gmail.com
			Chittagong			
9	Md Tariq Aziz	М	Bangladesh Forest Department	Research Officer	01790284328	Tariqaziz9718@gmail.com
10	Md. Sayed Ali	М	Bangladesh Forest Department	DFO, Sundarbans	01819810303	sayed13143@gmail.com
				West Forest Division		

Appendix 3. Evaluation of the training

In total 10 (10 Male) participants attended the training and among the 9 too	ok part in the evaluation proce	SS
Male	9	100%
Female	0	0%
1. How often do you participate in training related to forest monitoring	?	
First time	6	67%
1-3 every year	3	33%
More than 3 per year	0	0%
Regularly (approximately one per month)	0	0%
2. I would describe my self as?		
A professor/academic	0	0%
A student	6	67%
Forest Department staff	3	33%
Government staff (outside Forest Department)	0	0%
NGO staff	0	0%
Private consultant	0	0%
Other	0	0%
3. My professional background relates most closely to:		
Forester	7	78%
GIS/RS	1	11%
Statistics	1	11%
Social survey/assessment	0	0%
Economics	0	0%
Natural Resource Management	0	0%
Ecology	0	0%
Other	0	0%
4. My years of relevant experience is		
1-2 years	5	56%
3-5 years	1	11%
5-7 years	2	22%
8-10 years	0	0%
More than 10 years	1	11%
5. The training was relevant to my daily work		
Strongly agree	8	89%
Agree	1	11%
Neutral	0	0%
Disagree	0	0%
Strongly disagree	0	0%
6. I had enough previous knowledge to understand the content of the e	vent	
Strongly agree	3	33%
Agree	4	44%
Neutral	0	0%
Disagree	2	22%
Strongly disagree	0	0%
7. This field training met my expectations in terms of the content and le	arning outcomes	1
Strongly agree	3	33%
Agree	6	67%

Neutral	0	0%
Disagree	0	0%
Strongly disagree	0	0%
8. The learning resources provided were adequate and useful		
Strongly agree	7	78%
Agree	2	22%
Neutral	0	0%
Disagree	0	0%
Strongly disagree	0	0%
9. The resource person presented information in a way that i could understand and w	was easy to follo	w
Strongly agree	9	100%
Agree	0	0%
Neutral	0	0%
Disagree	0	0%
Strongly disagree	0	0%
10. I feel confident to be able to carry out the tasks described in the training without s	upervision.	
Strongly agree	4	44%
Agree	5	56%
Neutral	0	0%
Disagree	0	0%
Strongly disagree	0	0%
11. I was pleased with the venue/meeting room/snacks etc		
Strongly agree	3	33%
Agree	4	44%
Neutral	2	22%
Disagree	0	0%
Strongly disagree	0	0%
12. Are there other people/agencies/organisations that you think should have been in	cluded in the tra	aining?
NGOs and private planters should be included		
More people can be included		
More forestry related people like students, teachers and FD people should have been inc	luded in this tra	ining
More students should be included in such kind of training		
SPARRSO can be included		
13. Any other comments?		
This training helps to develop my professional field experience and knowledge in collecti	ng field data for	tree
measurements.		
Lab training, the other parts, to develop allometric equation is a must. I request FAO, to	-	-
engaging more people from BFRI as this institute carry out some research in forests		
Statistical method or design should be included. Field or site selection should cover the w	vhole of Banglad	esh
I think the training is partially incomplete because I did not get any related lab training.		
It should include field work, laboratory work and model development and selection.		
This type of training should be arranged in every regional university.		
It should include laboratory analysis and allometric model selection		