Improved national tree allometric equation database to support forest monitoring and assessment of Bangladesh

Bangladesh Forest Department March 2016

The Forest Department of Bangladesh leads actions to improve forest management and conservation, adopting forward thinking, innovative approaches in its management of approximately 1.55 million hectares of land across the country.

In 2015, the Forest Department began a process to establish a National Forest Inventory and Satellite Land Monitoring System for improved forest and natural resource management. The process supports national objectives related to climate change mitigation and provides information in support of the UN-REDD programme aimed at Reducing Emissions from Deforestation and Forest Degradation (REDD+). The process also addresses domestic information needs and supports national policy processes related to forests and the multitude of interconnected human and environmental systems that forests support.

The activities implemented under the Bangladesh Forest Inventory process are collaboration between several national and international institutions and stakeholders. National partners from multiple government departments and agencies assist in providing a nationally coordinated approach to land management. International partners, including the United Stated Agency for International Development (USAID) and the Food and Agriculture Organization of the United Nations (FAO) are supporting the development of technical and financial resources that will assist in institutionalizing the process.

The results will allow the Forest Department to provide regular, updated information about the status of trees and forests for a multitude of purposes including for assessment of role of trees for firewood, medicines, timber, and climate change mitigation.

CONTACTS:

Md. Zaheer Iqbal

National Project Coordinator
Bangladesh Forest Department
Email: z.iqbal60@gmail.com

Matieu Henry
Chief Technical Advisor
Food \& Agriculture Organization of The United Nations
Email: matieu.henry@fao.org

Suggested Citation: Hossain, M. 2016. Improved National Tree Allometric Equation Database to Support Forest Monitoring and Assessment of Bangladesh. Bangladesh Forest Department, Food and Agricultural Organization of the United Nations, Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh.

Disclaimer

This report is designed to reflect the activities and progress related to the project GCP/GD/058/ USAID "Strengthening National Forest Inventory and Satellite Forest Monitoring System in support of REDD+ in Bangladesh". This report is not authoritative information sources - it does not reflect the official position of the supporting international agencies including USAID or FAO. and should not be used for official purposes. Should readers find any errors in the document or would like to provide comments for improving its quality they are encouraged to contact one of above contacts.

Executive Summary

Estimation of forest biomass and volume are important to know the forest stocking and productivity, nutrient cycling and budgeting, amount of carbon stock and prediction of future status of forest resources. Considering this importance, different research and academic institutions and individual researcher have developed biomass and volume allometric equations for estimation of volume stocking and biomass of a particular forest. Therefore, a database and quality control of these allometric equations have appeared as important tasks to assess the gaps and scope for the development of new allometric equations with important tree species of different forest types of Bangladesh.

Development of allometric equations for biomass and volume requires extensive planning, field work, sample analysis in the laboratory, and data compilation and analysis. Most of the cases, these activities are destructive, difficult and expensive to repeat. Measurement of some variables are mandatory for the development of allometric equations, which are linked with the national forest inventory and some other variables may consider as additional information for future forest monitoring. It is certain that the current computing system can be improved and the uncertainty in estimation can be reduced by following a standard field measurement procedure. Some errors were observed in allometric equations which mostly were associated with the use of different methods of field measurement, sample processing, data compilation, statistical analysis, use of different units of measurement. Therefore, development of a field measurement protocol is an important concern to maintain consistency in field measurement activities for the development of allometric equations. This protocol may guide forest technicians, professionals, and students for the development of biomass and volume allometric equations involving both the destructive and semi-destructive activities. Khulna University with the support of Forest Department and FAO have developed a database of allometric equations and also prepared a field measurement protocol that can be used for development of biomass and volume allometric equations, measurement of wood density, and assessment of carbon and other nutrients (N, P and K) in different parts of plants (e.g. Leaves, stem, branches, bark etc.).

Contents

Executive Summary 3
List of Tables 6
List of Figures. 7

1. Introduction 8
2. Objectives8
2.1 General objective 8
2.2 Specific objectives 8
3. Activities and Deliverables 9
3.1 Develop the national database for tree volume and biomass assessment 9
3.2 Prepare the report based on national consultation on assessing tree and forest volume in Bangladesh 9
3.3 Develop a field measurement protocol 9
4. Activity 1: Develop the national database for tree volume and biomass assessment. 10
4.1 Information collection and data processing. 10
4.1.1 Collection of literature 10
4.1.2 Literature for allometric equations 10
4.1.3 Data entry 10
4.2 Validation test of allometric equations 11
4.3 Biomass and volume allometric equations in Bangladesh 11
4.4 Verified allometric equations in Bangladesh 12
4.5 Geographical distribution of the equations in Bangladesh 15
5. Activity 2: Reports on national consultation workshop on assessing tree and forest volume in Bangladesh 15
5.1 National consultation workshop on tree allometric equation in Bangladesh. 15
5.2 Session 1: Opening session 16
5.3 Session 2: Status of biomass and volume allometric equations in Bangladesh 16
5.4 Session 3: Field measurement protocol 18
5.5 Group discussion: Identify the gaps in allometric equations and need of new allometric equations and improvement of field measurement protocol 18
6. Activity 3: Field measurement protocol on tree allometric equation 21
6.1 Content of the protocol 21
6.2 Table of contents 22
7. Recommendations for further model development 24
8. References 26
Appendix 1. List of references 27
Appendix 2. Species wise valid allometric equations in Bangladesh 31
Appendix 3. Distribution of allometric equations in different ecoregions of Bangladesh 41
Appendix 4. Steps in the development of biomass and volume allometric equations 47

List of Tables

Table 1: Allometric equation in Bangladesh 11
Table 2: Different categories of allometric equations in Bangladesh 11
Table 3: Result of quality control of allometric equations 12
Table 4: List of species having valid allometric equations in Bangladesh 14
Table 5: Numbers of allometric equations and species in different ecoregion of Bangladesh 15
Table 6: Required tools and materials for the measurement of volume and biomass of sampled tree 21
Table 7: Table of content of the field measurement protocol 22
Table 8: Recommended list of plant species for further development of allometric equation 24

List of Figures

Figure 1: Pattern of different categories of allometric equations in Bangladesh 12
Figure 2: Proportion of valid equation for biomass and volume allometric database 12
Figure 3: Categories of valid allometric equations 13
Figure 4: Categories of valid allometric equations for individual and mixed species and forest land use pattern 13
Figure 5: measurement of biomass and volume of bigger sized trees using semi-destructive method22

1. Introduction

Allometric equations are important for estimating forest biomass and volume, fuel wood and carbon stock etc. which ultimately help to formulate the forest policies for its better management. However, the estimation of these parameters requires careful collection and use of available allometric equations. Inappropriate development and use of equations lead to significant errors and may lead to inappropriate decisions and forest management. Allometric equations are used for a wide range of purposes such as bioenergy, merchantable timber, nutrient cycling, payment for environmental services etc.

Few countries have developed a national database for the biomass and volume allometric equations. In South Asia, the first regional database was developed in 2014 (Sandeep et al., 2014). In Bangladesh, a first database was developed in 2013 (Akhter et al., 2013). However, those tree allometric equation databases were not quality controlled. Indicators for controlling the quality of allometric equations can be the interval of validity, input parameters, and the sample size among other parameters. In addition, other information are necessary to improve tree and forest biomass and volume assessment such as biomass expansion factors, height diameter relationships, plant functional types, wood density among others various types of information are being collected by different national and regional entities and different stakeholders.

Very recently, Khulna University, in collaboration with Forest Department and FAO, has developed a national database for Bangladesh that includes biomass and volume allometric equations, raw data, wood density and their related Meta data. Completion of the database and its accessibility are important national efforts that may improve the estimate of tree and forest resources. Therefore, a national consultation was organized on March $6^{\text {th }} 2016$ to finalize the national database on biomass and volume allometric equations and manual for field data collection. From this consultation, gaps in the developed allometric equations and needs for the development of new equations considering the forest type/ land uses were identified.

2. Objectives

2.1 General objective

The general objective of this contract was
"Improved National Tree Allometric Equation Database to support forest monitoring and assessment"

2.2 Specific objectives

The specific objectives were as follows

- Database of tree allometric equations, wood density, biomass expansion factors and diameter-height relationships for Bangladesh developed
- Gaps, needs for new allometric equations considering forest type, interval of validity, independent variables, architecture, wood density from national consultation identified
- Scientific literature for all tree allometric equations provided
- Field measurement protocol manual developed
- Final report including recommendations for further model development submitted.

3. Activities and Deliverables

3.1 Develop the national database for tree volume and biomass assessment

A first database for tree allometric equations was developed in 2013 and is available on the web platform Globallometree. Under this activity, the existing database will be updated, all documents and meta-data will be archived and made available to national stakeholders involved in the forest monitoring system. This database will include data on wood density, biomass expansion factors, height-diameter relationships, tree destructive measurement information etc. All equations and data will be quality controlled based on expert judgement and a detailed QC method. Such a method can consider the use of indicators such as the interval of validity, the sample size, the mathematical form of the curve, comparison with other equations to identify whether an equation can be considered as correct or not. The validation of the quality controlled database can be done through the consultation and validation of national experts and comparison with other databases and equations.

3.2 Prepare the report based on national consultation on assessing tree and forest volume in Bangladesh

Biometrician and forest technicians involved in the development and use of tree allometric equations will meet and analyse available data, identify gaps and needs and provide recommendations where new equations should be developed taking into consideration forest type, interval of validity, independent variables, architecture, wood density, etc.

3.3 Develop a field measurement protocol

Measuring tree biomass through destructive harvesting methods is particularly costly and time consuming. In addition, often, scientist or technicians undertake field measurement in different ways and the results are not consistent. In consequence, this activity will focus on the preparation of a field measurement manual to be used by the various stakeholders to undertake further tree allometric measurement activities.

4. Activity 1: Develop the national database for tree volume and biomass assessment

4.1 Information collection and data processing

4.1.1 Collection of literature

The database on biomass and volume allometric equations was developed from the secondary sources. At the beginning, key stakeholders (government departments, research organizations, academic institutions and potential individual researchers) were identified with experiences on allometric equations. An online search using Google Scholar also helped to identify individual researchers and Institutes.

A list of literatures was prepared from the secondary sources. The listed literatures were searched in the bibliographic database such as Science Direct, Springer Link, CABI, AGRIS, AGRICOLA, JSTOR, ResearchGate. Personal and official communication were established with Forest Department, Bangladesh Forest Research Institute, Academic Institutions and individual researchers to get hard copies of inventory reports, research articles, research bulletin, monograph, proceeding's paper and thesis which contained quite good number of biomass and volume allometric equations of Bangladesh. Hard and soft copies of the collected literatures were maintained for the development of this database as well as for references (Appendix 1).

4.1.2 Literature for allometric equations

The extensive literature survey produced hundreds of documents. These documents were sorted considering relevance and repetition and it yielded 52 documents containing relevant information. Hard and soft copies of these sorted literatures were prepared for the development of this database as well as for references (Appendix 1).

4.1.3 Data entry

The information in the sorted documents were interpreted and entered into an Excel database according to FAO requirement. The database consists of 90 variables grouped into 7 different categories as follows:

[^0]
4.2 Validation test of allometric equations

All the allometric equations were tested through a quality control method following four types of verification (Operational verification, Conceptual verification, Applicability and Statistical credibility) following Birigazzi et al (2015) and Gamarra et al. (2016)

- Operational verification: Too large or too small predicted biomass or volume values
- Conceptual verification: Predicted biomass or volume are lower than " 0 " or negative values
- Applicability: Under which condition the model can be applied (Population ecology, environmental condition of the site where the equation was developed, tree component measured, Taxonomic reference, Range of applicability)
- Statistical credibility: Sample size should be at least 30 for trees and coefficient of determination should be higher than 0.85

4.3 Biomass and volume allometric equations in Bangladesh

A total of 517 biomass and volume allometric equations for 80 species of trees, shrub, palm and bamboo in Bangladesh were recorded in the database (Tables 1 and 2). About 70% of allometric equations were for volume followed by green biomass (16\%) and oven-dried biomass (6\%) (Figure 1).

Table 1: Allometric equation in Bangladesh

Category	Number
Tree	477
Shrub	31
Palm	3
Bamboo	6
Grand total	517

Table 2: Different categories of allometric equations in Bangladesh

Category	Volume	Green biomass	Oven-dried biomass	Air-dried biomass	Carbon	Nutrients	Length of split leaf
Tree	360	78	11	0	25	3	0
Shrub	1	1	20	0	3	6	0
Palm	0	2	0	0	0	0	1
Bamboo	0	3	0	3	0	0	0
Total	361	84	31	3	28	9	1

Figure 1: Pattern of different categories of allometric equations in Bangladesh

4.4 Verified allometric equations in Bangladesh

All the data and allometric equations for biomass and volume of different plant species were tested for validation and only 222 allometric equations of 39 species found to be valid considering statistical credibility, applicability, operational and conceptual verification, which gave only 43% of valid equation of the total database (Table 3 and Figure 2).

Table 3: Result of quality control of allometric equations

Category	Operational verification	Conceptual verification	Applicability	Statistical credibility	Final validation
Valid	473	394	517	285	222
Not valid	44	123	0	232	295
Total equation	517	517	517	517	517

Figure 2: Proportion of valid equation for biomass and volume allometric database

Tree contained highest (138) number and proportion (62\%) of volume allometric equations followed by green biomass and oven-dried biomass (Table 4 and Figure 3). About 97\% valid allometric equations were for individual species while only 3% for mixed species. Irrespectively, about 77\% of allometric equations were for plantation followed by natural forest (15\%) and home garden (7\%) (Figure 4).

Table 4: Plant life-form wise valid allometric equations

	Volume	Green biomass	Oven-dried biomass	Carbon	Nutrients
Tree	138	44	10	1	3
Shrub	0	0	17	3	6
Palm	0	0	0	0	0
Bamboo	0	0	0	0	0
Grand total	138	44	27	4	9

Figure 3: Categories of valid allometric equations

Figure 4: Categories of valid allometric equations for individual and mixed species and forest land use pattern

Only 39 species of 18 families and 31 genus have 222 valid equations. However, Sonneratia apetala, Acacia mangium and Acacia auriculiformis have each of 12 volume equations. Senna siamea has 23 allometric equations for green biomass, but other species have very few equations under each category (Table 4). Species wise valid allometric equations in Bangladesh have been presented in Appendix 2.

Table 4: List of species having valid allometric equations in Bangladesh

Genus	Species	Local name	Volume	Green biomass	Oven- dried biomass	Carbon	Nutrients	Remark
Acacia	mangium	Mangium	12	12				
Acacia	auriculiformis	Akashmoni	12	5	1			
Acacia	nilotica	Babla	2					
Aegialitis	rotundifolia	Nuniya			2			
Aegiceras	corniculatum	Khulshi			4	1	3	
Albizia	procera	Koroi	2					
Albizia	spp	Koroi	6					Mixed species
Albizia	saman	Rain tree	6					
Albizia	richardiana	Rajkoroi	2					
Aphanamixis	polystachya	Pitraj	2					
Artocarpus	chaplasha	Chapalish	2		2			
Artocarpus	heterophyllus	Kathal	2					
Avicennia	officinalis	Baen	2					
Azadirachta	indica	Neem	2					
Breonia	chinensis	Kadam	1					
Ceriops	decandra	Goran			5			
Dalbergia	sissoo	Sissoo	5					
Dipterocarpus	turbinatus	Telya garjan	3					
Eucalyptus	camaldulensis	Eucalyptus	7					
Eucalyptus	tereticornis	Eucalyptus	1					
Eucalyptus	brassiana	Eucalyptus	1					
Excoecaria	agallocha	Gewa			5	1	3	
Falcataria	moluccana	Molucena	2					
Gmelina	arborea	Gamar	2					
Hevea	brasiliensis	Rubber	10					
Kandelia	candel	Goria			5	1	3	
Lagerstroemia	speciosa	Jarul	1		1			
Lannea	coromandelica	Badi	1					
Mangifera	indica	Am	2					
Melia	azadarach	Bokain, Ghora neem	2					
Mixed			1	4	1	1		Mixed species
Pinus	caribaea	Pine	8					
Senna	siamea	Minjiri	8	23				
Shorea	robusta	Sal	7					
Sonneratia	apetala	Keora	12					
Swietenia	macrophylla	Mahogany	6					
Syzygium	cumini	Kalojam	1					
Tectona	grandis	Teak	2		1			
Terminalia	arjuna	Arjun	2					
Xylia	xylocarpa	Lohakat, Pyinkado	1					

4.5 Geographical distribution of the equations in Bangladesh

Some of the allometric equations were developed from sample trees of different locations (Districts) that overlapped different ecoregions of Bangladesh. However, numbers of allometric equations and species along with the plant components in each ecoregion with specific location species have been presented in the following tables (Tables 5-10) and Figures (Appendix 3).

Table 5: Numbers of allometric equations and species in different ecoregion of Bangladesh

Ecoregion	Zones	Equation number	Species number
FAO	Tropical moist Deciduous Forest	38	12
	Tropical rain forest	26	12
Udvardy	Tropical humid forests	76	14
	Tropical dry forests / Woodlands	12	9
WWF	Tropical humid forest	12	6
	Tropical and subtropical moist	broadleaf	10
	forests		1
	Tropical and subtropical dry broadleaf forests	77	20
	Mangrove	33	5
Bailey	Rainforest Division	101	21
	Rainforest Regime Mountain	12	9
Holdridge	Subtropical moist	13	4
	Subtropical wet	13	10
	Tropical moist	10	2
Bangladesh IUCN	Brahmaputra-Jamuna flood plain	4	2
	Chittagong Hills and the CHTs	6	2
	Ganges flood plain	2	1
	Offshore island	14	2
	Sundarbans	33	5
	Surma-Kushiara flood plain	1	1
	Sylhet hills		8

* Overlapped ecoregions have not considered in this table

5. Activity 2: Reports on national consultation workshop on assessing tree and forest volume in Bangladesh

5.1 National consultation workshop on tree allometric equation in Bangladesh

A national consultation workshop on "Tree Allometric Equations in Bangladesh" was held on Sunday, March 6, 2016 at NILG Conference Room, $2^{\text {nd }}$ Floor, Main Biulding, Agargaon, Dhaka. The proceedings of this consultation has been prepared, submitted and circulated to the participants and others for their further comments. The general objective of this national consultation was to strengthen the national capacities in developing and using of tree
allometric equations and to improve the assessment of tree volume and biomass in Bangladesh. The specific objectives were as follow:

- To present the current and up-to-date knowledge for building allometric equations including courses on the related theory, field operations, fitting and use of the allometric equations.
- To present the current status of developed allometric equations for biomass and volume.
- To propose technical exercises aiming at identifying gaps (knowledge, allometric equations and raw data) to report carbon stocks and carbon stock changes at the country level.
- To get comments and suggestion on the field measurement protocol on tree allometric equation, this will ensure the consistency in field measurement activities for the development of allometric equation in Bangladesh.
- To initiate building a network of experts on allometric equations.

5.2 Session 1: Opening session

Mr. Mozaharul Islam, Conservator of Forests and National Project Coordinator delivered the welcome speech. Dr. Laskar Muksudur Rahman, FAO presented the objectives of this national consultation. Mr. Md. Farid Uddin Ahmed, Executive Director, Arannayk Foundation were present as Special Guest and Mr. Md. Yunus Ali, Chief Conservator of Forest, Forest Department was present as the Chief Guest of the national consultation workshop on tree allometric equations. Mr. Md. Yunus Ali, Chief Conservator of Forest, in his speech, highlighted important issues specific to the country and provided valuable guidelines for developing the allometric equation.

Opening session of the national consultation workshop on tree allometric equations in Bangladesh

5.3 Session 2: Status of biomass and volume allometric equations in Bangladesh

Prof. Dr. Al Amin, Institute of Forestry and Environmental Sciences, University of Chittagong presented on "Importance of tree allometric models and equations for national forest, tree
volume, biomass and carbon stock assessment". He mentioned the importance of site and species specific allometric equations for estimation of above-ground biomass and volume in a forest. He has presented the sources of errors in estimating forest biomass. In conclusion, he mentioned that allometric equations are the most easy and authentic way to estimate biomass or volume of trees.

Database on tree allometric equations, wood density, biomass expansion factors and diameter-height relationships for Bangladesh was developed by Khulna University with the support of Forest Department and FAO. As part of this activity, Mr. Mohammad Raqibul Hasan Siddique, Assistant Professor, Forestry and Wood Technology Discipline, Khulna University presented on "Allometric Equation Database of Bangladesh" to visualize the present stratus and gaps in biomass and volume allometric equations in Bangladesh. Validity of all the 515 allometric equations was tested through a quality control method following Birigazzi et al (2015) and Gamarra et al. (2016).

Allometric Equation Database of Bangladesh

Mohammad Raqibul Hasan Siddique
Forestry and Wood Technology Discipline
Khulna University, Khulna-9208

Considering the synthesis of the database of allometric equations, wood density, raw data, diameter and height relationship and biomass expansion factors, Mr. Mohammad Raqibul Hasan Siddique pointed the following gaps:

- Limited species has allometric equations
- Few equations for total above-ground biomass
- Few equations for the estimation of merchantable volume
- BEF are rare and often not adapted
- Few tree species have clear relationship between DBH and other parameters;
- Raw data are rarely accessible.

5.4 Session 3: Field measurement protocol

S. M. Zahirul Islam, Research Officer, Bangladesh Forest Research Institute, presented a speech on "Destructive field measurements for tree allometric equation development". He presented the different mathematical forms used for the development of tree volume and biomass allometric equations. He also presented the destructive and non-destructive measurements for the development of tree volume and biomass allometric equation were also presented.

Dr. Mahmood Hossain, Professor, Forestry and Wood Technology Discipline, Khulna University presented the field measurement protocol on tree allometric equation for estimating above-ground biomass and volume in Bangladesh. In his presentation, he justified the needs and uses of this protocol for different forest types and vegetation forms. This protocol will be updated based on the participant's contribution. He presented the different steps involved in the development of allometric equation. He presented 44 field and laboratory data forms for recording different measurement of variables and result related to the development of biomass and volume allometric equations for different plant life-form (Trees, Shrubs, Palms, Nypa palm, Liana and Bamboo). The field and laboratory analysis form contained measurements of the basic tree dendrometric measurement and laboratory measurements (fresh weight to oven-dry weight conversion ratio, wood density, carbon and nutrient content) in plant parts. He explained elaborately how semi-destructive method (Branch Cutting) can be used for the development of tree biomass allometric equations.

Field measurement protocol on tree allometric equation for estimating above-ground biomass and volume in Bangladesh

5.5 Group discussion: Identify the gaps in allometric equations and need of new allometric equations and improvement of field measurement protocol

Four groups were formed in the consultation workshop to identify the gaps in the derived allometric equation, need of new allometric equations considering forest types, life form and improvement of field measurement protocol for the development of biomass and volume allometric equations. The outcomes from the group discussion are as follows:

Group 1: The findings of group discussion are as follows

- The following forest type have not been covered by allometric equations
- Fresh water Swamp forest
- Sal forest (for associates)
- Sundarbans (partly covered)
- Coastal afforestation (partly covered)
- Hill forest (partly covered)
- Village/ homestead forest (partly)
- The following tree species need better consideration for the development of allometric equation
- Acacia catechu
- Adina cordifolia
- Amoora cucullata
- Areca catechu
- Cassia fistula
- Citrus grandis
- Cocos nucifera
- Dalbergia sisoo
- Delonix regia
- Dillenia indica
- Ficis hispida
- Melocanna baccifera
- Michelia champca
- Phoenix sylvestris
- Samanea saman
- Switenia spp
- Syzygium grandis
- Tamarindus indica
- Terminalia belerica
- Terminalia catappa
- Toona ciliata
- Trewia nudiflora
- The following improvement is needed as recommended by the group members:
- Pictorial handbook preparation in Bengali

Group 2: The findings of group discussion are as follows:

- The following forest types have not been covered by allometric equations:
- Tree species outside the Forest
- Mangroves
- In deciduous forest
- In Hill forest/Nauaral forest
- In Swamp
- The following tree species need better consideration for the development of allometric equation:
- Artocarpus, Guava, Mangifera, Coconut, Areca catechu, Eucalyptus etc.
- Heritiera, Avicinia, Sonneratia, Xylocarpus, Nypa etc.
- Shorea, Haldu, Sonalu,
- Bamboo, Champa, Chikrassi, Chapalish
- Barringtonia, Pongamia etc.
- The following improvement is needed as recommended by the group members:
- Some terminologies to be elaborated.

Group 3: The findings of group discussion are as follows:

- The following forest types have not been covered by allometric equations:
- Swamp forest
- Mango plantation
- Agor plantation
- Bamboo
- Tea garden
- Shrub land
- Sand (Inland Char land)
- The following tree species need better consideration for the development of allometric equation:
- Areca catechu
- Bambusa balcooa
- Bambusa vulgaris
- Cocos nucifera
- H.fomes
- Melocanna baccifera
- Moringa oleifera
- Phoenix sylvestris
- Psidium guajava
- R. apiculata
- Tamarindus indica
- Terminalia catappa
- X. granatum
- X. mekongensis
- Zizyphus mauritiana
- The following improvement is needed as recommended by the group members:
- Title can be changed (improved) in the context of the content. It covers different forms of plants other than trees.

Group 4: The findings of group discussion are as follows:

- The following forest types have not been covered by allometric equations:
- Fresh water swamp forest
- Tree outside Forest
- The following tree species need better consideration for the development of allometric equation:
- Acacia catechu
- Amoora cucullata
- Anthocephalus chinensis
- Areca catechu
- Bambusa balcooa
- Bambusa vulgaris
- Borassus flabellifer
- Cocos nucifera
- Dalbergia sissoo
- Delonix regia
- Erythrina orientalis
- Ficus hispida
- Leucaena leucocephala
- Melocanna baccifera
- Oxytenanthera nigrociliata
- Phoenix sylvestris
- Samanea saman
- Swietenia spp
- Toona ciliata
- Zizyphus mauritiana
- The following improvement is needed as recommended by the group members:
- Field testing

6. Activity 3: Field measurement protocol on tree allometric equation

Tree biomass and volume can be measured from both destructive (clear-cut) and nondestructive (allometric equation) methods. Allometric method is the most powerful tool of biomass and volume estimation. The use of appropriate equations will contribute to improve the assessment of forest resources which may guide the forest policy and management initiatives. Development of allometric models for biomass and volume requires extensive planning, field work (sampling of forest within each forest strata, sampling of plots within each forest, sampling of plants within each plot; measurement of standing tree dimensions; felling of sampled plant; separating and weighing of different plant parts; sub-sampling of different plant parts for further assessment and data recording), sample analysis in the laboratory, and data analysis. Most of the cases, these activities are destructive, difficult and expensive to repeat. Measurement of some variables are mandatory for the development of allometric equations, which are linked with the national forest inventory and some other variables may consider as additional information for future forest monitoring. This manual aims to guide forest technicians, professionals, and students for the development of biomass and volume allometric equations involving the destructive and semi-destructive activities. The protocol "Field measurement protocol on tree allometric equation for estimating above-ground biomass and volume in Bangladesh" has been developed and submitted as mentioned in LOA.

6.1 Content of the protocol

This protocol describes the steps for the development of biomass and volume allometric equations for trees, shrubs, palms, nypa palm, liana and bamboo (Appendix 4). It includes the required formulas for field and laboratory works, required tools and materials.

Table 6: Required tools and materials for the measurement of volume and biomass of sampled tree

Mandatory tools and materials

- Hand compass \quad - Rope
- GPS
- Measuring tape (1 cm precision)
- Tree caliper
- Finnish parabolic caliper
- Diameter measuring tape (1 mm precision)
- Haga altimeter
- Criterion DR 1000
- Chain saw
- Crosscut saw
- Pruning saw
- Axe
- Debarking knife or bark spud precision)
- Paint
- Digital camera
- Measuring rod
- $\quad 1.3 \mathrm{~m}$ long stick (to reduce human error during DBH measurement)
- Knives
- Digital hanging measuring scale 200-500 kg (0.1 kg precision)
- Digital measuring scale $50 \mathrm{~kg}(0.05 \mathrm{~kg}$
- Digital laboratory balance $2200 \mathrm{~g}(0.01 \mathrm{~g}$ precision)
- Zip poly bag
- Woven polypropylene bag
- Permanent marker
- Pen and pencil
- Field and laboratory data collection tables

- Pruning scissor

- Paper
- Gasoline powered portable winch
- Open foris collect software (may be used for data entry and analysis)

This protocol explains the sampling procedure of plants and dendrometric measurements of plant dimensions (total height, merchantable height, stump height, crown length, crown diameter, crown volume, crown shape and form, DBH, collar diameter, log volume, buttress volume, bark thickness etc.). It also guides the felling operation of the sampled plant, sectioning of bole and bigger branches, and measurement of log diameters at thicker and thinner ends. The separation procedure of plant parts (leaves, flowers, fruits, petioles, rachis and leaflets, smaller branches, bigger branches, log and bark), and measurement of fresh biomass in the field also described here. It contains detailed description of semi-destructive method of volume and biomass measurement for trees (Figure 7).

Figure 5: measurement of biomass and volume of bigger sized trees using semi-destructive method

This protocol elaborately explains the procedure of sub-sampling of different parts of plant to calculate the fresh to oven-dry weight conversion weight and for the measurement of wood density. It also describes the estimation procedure of carbon, nitrogen, phosphorus, potassium, calcium, magnesium and manganese. Finally, it contains 46 annexes for field data collection and laboratory data recording and analysis.

6.2 Table of contents

Detailed section in the protocol can be found from the following table of contents.
Table 7: Table of content of the field measurement protocol
Acknowledgement
List of Figures
List of Acronyms
List of Annexes

1. Introduction
2. Calculation
2.1 Steps involved in development of biomass and volume allometric equation
2.2 Required formulas for field and laboratory work
3. Preparation of the field measurement
3.1 Field crews
3.2 Required tools and materials
4. Sampling of plants for the development of allometric equation
5. Field measurement
5.1 Season of measurement
5.2 Geographical coordinate of the sampled plants
5.3 Measurement of a tree
5.3.1 Components of a tree
5.3.2 Bole diameter and DBH measurement
5.3.3 Height measurement
5.3.4 Measurement of buttress
5.3.5 Crown diameter
5.3.6 Crown length
5.3.7 Crown shape and form
5.3.8 Age
5.3.9 Felling of trees
5.3.11 Separated into plant parts
5.3.12 Measurements of felled tree parts
5.3.13 Semi-destructive measurement of biomass and volume of larger (DBH $>50 \mathrm{~cm}$) trees
5.4 Measurement of shrubs
5.4.1 Diameter and height measurement
5.4.2 Felling and processing of sampled shrubs
5.4.3 Biomass measurement of shrub
5.5 Measurement of palms
5.5.1 DBH and height measurement
5.5.2 Crown diameter and length
5.5.3 Felling and processing of sampled palm
5.5.4 Biomass and volume of sampled palm
5.5.5 Measurement for Nypa fruticans
5.6 Measurements of liana
5.6.1 Diameter measurement
5.6.2 Felling and processing of sampled liana
5.6.3 Biomass measurement of liana parts
5.7 Measurements of bamboo
5.7.1 DBH and height measurement
5.7.2 Felling and processing of sampled biomass
5.7.3 Biomass measurement of bamboo parts
5.8 Sub-sampling of plant parts for fresh to oven-dried weight conversion ratio
5.9 Sampling for wood density
6. Laboratory analysis
6.1 Oven-dry weight of sub-samples
6.2 Organic carbon concentration in different parts of sample trees
6.3 Measurement of wood density
6.4 Nutrients (N, P, K, Ca, Mg and Mn) in different part of sample tree
6.5 Volume of crown
6.6 Log biomass calculation from volumedata
7. Data compilation
7.1 Oven-dry biomass of sampled plants
7.2 Volume of sampled tree or palm
7.3 Carbon stock in sampled plant
8. References

7. Recommendations for further model development

During last NFA in 2005-07, globally available equations and factors were used for the calculation of AGB for the country. The Sundarban Carbon inventory in 2009-10 used the globally available equations for the mangrove species to calculate the carbon for the Sundarban Reserved Forest. To ensure accuracy in carbon estimation, development of allometric equations for local species considering various factors for different forest types is essential. Major species of the following forest types/ forest land uses have to give more emphasis during the development of biomass and volume allometric equations.

```
- Agor plantation
- Bamboo natural/ homestead
o Coastal afforestation
- Fresh water swamp forest
- Hill forest plantation/ natural (partly covered)
O Inland Char land
- Mango plantation
- Sal forest (for associate species)
- Sundarbans (Major species)
- Tea garden
O Tree species outside the Forest
```

A list of 77 species of trees, shrubs, palms has been recommended for the further development of biomass and volume allometric equation. This list has been compiled considering the species with valid allometric equations, forest types/ forest land uses, occurrence of species in NFA (2005-07) and discussion from national consultation workshop on "Tree allometric equations in Bangladesh".

Table 8: Recommended list of plant species for further development of allometric equation

Acacia catechu	Bombax ceiba	Dendrocalamus longispathus
Adina cordifolia	Borassus flabellifer	Dillenia indica
Albizia lebbeck	Bruguiera gymnorrhiza	Dillinia pentagyna
Albizia odoratissimus	Bruguiera sexangula	Diospyros peregrina
Anacardium occidentale	Butea monosperma	Disopyros philippensis
Areca catechu	Calophyllum inophyllum	Duabanga grandiflora
Avicennia alba	Cassia fistula	Dysoxylum binectariferum
Avicennia marina	Cerbera manghas	Erythrina orientalis
Avicennia officinalis	Chickrassia tabularis	Excoecaria indica
Bambusa arundinacea	Clerodendrum inerne	Feronia limonia
Bambusa balcooa	Cocos nucifera	Ficus bengalensis
Bambusa longispiculata	Cynometra ramiflora	Ficus hispida
Bambusa polymorpha	Dalbergia sisoo	Ficus religiosa
Bambusa tulda	Dalbergia spinosa	Heritiera fomes
Bambusa vulgaris	Dellinia pentagyna	Hibiscus tiliaceus
Barringtonia acutangula	Delonix regia	Khaya anthotheca

Leucaena leucocephala	Schima wallichii
Litchi chinensis	Sonneratia apetala
Lumnitzera racemosa	Sonneratia caseolaris
Melocanna baccifera	Spondias dulce
Michelia champca	Syzygium grandis
Mimosops elengi	Tamarindus indica
Moringa oleifera	Tamarix indica
Nypa fruticans	Terminalia belerica
Phoenix paludosa	Terminalia catappa
Phoenix sylvestris	Toona ciliata
Pithecellobium dulce	Trema orientalis
Pongamia pinnata	Xylocarpus granatum
Psidium guajava	Xylocarpus mekongensis
Rhizophora apiculata	Zizyphus mauritiana
Rhizophora mucronata	

8. References

Akhter, M., Mahmood, H., Birigazzi, L. 2013. Tree volume and biomass allometric equations of Bangladesh. FD and FAO, Dhaka, Bangladesh
Birigazzi, L., Gamarra, J.G.P., Sola, G., Giaccio, S., Donegan, E., Murillo, J., Henry, M., Picard, N. 2015. Toward a transparent and consistent quality control procedure for tree biomass allometric equations. XIVWORLD FORESTRY CONGRESS, Durban, South Africa, 7-11 September 2015.
Gamara, J.G.P., Henry, M., Birigazzi, L., Donegan, E. 2016. Capitalizing on the information in allometric equation data base for forest biomass estimation. Indian Forester, 142 (1): 93-101, 2016
Sandeep, S., Sivaram, M., Henry, M., Birigazzi, L. 2014. Inventory of volume and biomass tree allometric equations for South Asia. KFRI, Peechi, India, Food \& Agriculture Organization of the United Nations, Rome, Italy

Alamgir, M., Al-Amin, M. 2008. Allometric models to estimate biomass organic carbon stock in forest vegetation. Journal of Forestry Research 19 (2): 101-106

Chaffey, D.R., Miller, F.R., Sandom, J.H. 1985. A forest inventory of the Sundarbans, Bangladesh. Project report 140, Overseas Development Administration, Land Resources Development Centre, England

Cox, F.Z. 1984. Volume functions for plantation species and elements for growth models for Teak. Field Document no 2, Assistance to the Forestry Sector of Bangladesh, Food and Agricultural Organization of the United Nations, FAO/UNDP Project BGD/79/017

Das, N. 2014. Modeling Develops to Estimate Leaf Area and Leaf Biomass of Lagerstroemia speciosa in West Vanugach Reserve Forest of Bangladesh. ISRN Forestry, doi. org/10.1155/2014/ 486478

Das, S., Davidson, J., Latif, M.A., Rahman, F., Das, S. 1985. Tree volume tables for Moluccana (Paraserianthes falcataria syn. Albizia falcataria syn. A. moluccana) in Bangladesh. Bulletin no 4, Inventory Division, Bangladesh Forest Research Institute, Chittagong.

Das, S., Rahman, M.F., Reza, N.A., Latif, M.A. 1992. Tree volume tables for Sal (Shorea robusta Gaertn. f.) in the plantations of Bangladesh. Bulletin 7, Forest Inventory Series, Bangladesh Forest Research Institute, Chittagong, 1-11 pp.

Davidson, J., Das, S., Khan, S.A., Latif, M.A., Zashimuddin, M. 1985. Tree volume tables for small Eucalypt round wood in Bangladesh. Bulletin no 4, Silviculturer Research Division, Bangladesh Forest research Institute, Chittagong

Deb, J.C., Halim, M.A., Ahmed, E. 2012. An allometric equation for estimating stem biomass of Acacia auriculiformis in the north-eastern region of Bangladesh. Southern Forests 74(2): 103-113

Drigo, R., Latif, M.A., Chowdhury, J.A., Shaheduzzaman, M. 1987. The maturing mangrove plantations of the coastal afforestation project. Food and Agricultural Organization of the United Nations, FAO/UNDP Project BDG/85/085, Assistant to the Forestry Sector.

Drigo, R., Shaheduzzaman, M., Chowdhury, J.A. 1988. Inventory of forest resources of Southern Sylhet Forest Division. Assistance to Forestry Sector - Phase II, Field Document no 3, Food and Agriculture Organisation of the United Nations, FAO/UNDP Project BGD/85/085

Hossain, S.M.Y., Martin, A.R. 2013. Merchantable timber production in Dalbergia sissoo plantations across Bangladesh: regional patterns, management practices and edaphic factors. Journal of Tropical Forest Science 25(3): 299-309

Islam, S.M.Z., Ahmed, K.U., Khan, M.I. 2014. Mathematical models for estimating stem volume and volume tables of Rubber tree. Bulletin 10, Forest Inventory Series, Bangladesh Forest Reearch Institute, Chittagong.

Islam, S.M.Z., Khan, M.I. Ahmed, K.U. 2012. Volume equations and tables for Rajkoroi (Albizia richardiana King and Prain) planted in the southern part of Bangladesh. Bangladesh Journal of Forest Science 32 (1): 28-39

Islam, S.S., 1988. Commercial volume table for teak (Tectona grandis) in Bangladesh by regression technique. Bano Biggyan Patrika 17 (1\&2): 55-67

Islam, S.S., Kabir, J., Masum, A.K.M. 2012. Volume Table of Raintree (Samanea saman) in Bangladesh by Regression Technique. Open Journal of Statistics 2: 115-119

Islam, S.S., Reza, N.A., Hasnin, M., Khan, M.A.S., Islam, M.R., Siddiqi, N.A. 1992. Volume table of young Keora (Sonneratia apetala) trees for the western coastal belt of Bangladesh. Bulletin 1, Plantation Trial Unit Series, Bangladesh Forest Research Institute, Chittagong, 1-23 pp.

Khan, M.N.I., Faruque, O. 2010. Allometric relationships for predicting the stem volume in a Dalbergia sissoo Roxb. plantation in Bangladesh. iForest 3: 153-158

Kingston, B. 1979. A collation of tree and bamboo volume tables of Bangladesh. Field Document no 15, Food and Agricultural Organization of the United Nations, UNDP/FAO Project BGD/72/005, Forest Research Institute, Chittagong

Latif M.A., Habib, M.A. 1994. Biomass tables for Acacia mangium grown in the plantations in Bangladesh. Journal of Tropical Forest Science 7(2): 296-302

Latif, M.A., 1988. Biomass tables for young Eucalyptus grown in Bangladesh. Bano Biggyan Patrika 17 (1 \& 2): 46-54

Latif, M.A., Das, S., Rahman, M.F., Chowdhury, J.A. 1994. Tree volume tables for Baen (Avicennia officinalis L.) in the coastal plantations of Bangladesh. In: Latif, M.A. (ed.), Tree volume table for keora (Sonneratia apetala) and Baen (Avicennia officinalis) in the coastal plantation of Banglaesh. Bulletin 8, Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong, 21-23 pp.

Latif, M.A., Habib, M.A. 1993. Biomass table for Acacia auriculiformis grown in the plantation in Bangladesh. Indian Journal of Forestry 16 (4): 323-327

Latif, M.A., Habib, M.A. 1994. Biomass tables for minjiri (Cassia Siamea Lam.) grown in the plantations in Bangladesh. Bangladesh Journal of Forest Science 23 (1): 59-64

Latif, M.A., Habib, M.A., Das, S., 1993. Tree volume tables for Acacia mangium in the plantations of Bangladesh. Bangladesh Journal of Forest Science 22 (1 \& 2): 23-29

Latif, M.A., Islam, M.N. 1984a. Tree volume volume tables for Syzygium grande (Wt.) Wald (Dhakijam). In: Choudhury, J.H., and Davidson, J. (eds.), Tree volume tables for four species grown in plantation in Bangladesh. Bulletin 2, Inventory Division, Bangladesh Forest Research institute. Chittagong, Bangladesh, pp. 25-57.

Latif, M.A., Islam, M.N. 1984b. Tree volume tables for Artocarpus chaplasha Roxb. (Chapalish). In: Choudhury, J.H., and Davidson, J. (eds.), Tree volume tables for four species grown in plantation in Bangladesh. Bulletin 2, Inventory Division, Bangladesh Forest Research institute. Chittagong, Bangladesh, pp. 58-92.

Latif, M.A., Islam, M.N. 1984c. Tree volume tables for Dipterocarpus turbintus Gaertn. F. (Tali Garjan). In: Choudhury, J.H., and Davidson, J. (eds.), Tree volume tables for four species grown in plantation in Bangladesh. Bulletin 2, Inventory Division, Bangladesh Forest Research institute. Chittagong, Bangladesh, pp. 122-128.

Latif, M.A., Islam, M.N. Choudhury, J.H. 1984. Tree volume tables for Gmelina arborea Roxb. (Gamar). In: Choudhury, J.H., and Davidson, J. (eds.), Tree volume tables for four species grown in plantation in Bangladesh. Bulletin 2, Inventory Division, Bangladesh Forest Research institute. Chittagong, Bangladesh, pp. 93-121.

Latif, M.A., Islam, M.N., Islam, S.S. 1985. Tree volume tables for Teak (Tectona grandis) in Bangladesh. Bulletin no 5, Inventory Division, Bangladesh Forest Research Institute, Chittagong.

Latif, M.A., Islam, M.S., Islam, S.M.Z. 1999. Volume tables for sissoo, koroi, mahogany, eucalyptus and bokain planted on croplands in the western part of Bangladesh. Bangladesh Forest Research Institute, Chittagong.

Latif, M.A., Islam, M.S., Islam, S.M.Z., 2000. Volume tables for Sissoo, Koroi, Akashmoni, Babla, Mahogany, and Rain tree planted on embankments and road sides in the coastal areas of Bangladesh. Bulletin 9, Forest Inventory Series, Bangladesh Forest Research Institute, Chittagong.

Latif, M.A., Islam, S.M.Z. 2000. Volume tables for 11 important tree species grown in the home gardens of Bangladesh. Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong

Latif, M.A., Islam, S.M.Z. 2004. Timber and fuelwood volume tables for Acacia auriculiformis, A. mangium, Eucalyptus camaldulensis and Dalbergia sissoo in plantations in Bangladesh. Forestry Sector Project, Bangladesh Forest Department and Bangladesh Forest Research Institute, Chittagong.

Latif, M.A., Islam, S.S., Davidson, J. 1986. Metric volume tables for some tree species found in the natural forests of Bangladesh. Bulletin 6, Inventory Division, Bangladesh Forest Resarch Institute, Chittagong.

Latif, M.A., Khan, A.F.M.K., Hossain, M.M. 1998. Stump diameter -DBH - volume relationships for Teli Garjan (Dipterocarpus turbinatus), Dhakijam (Sygyzium grande) and Teak (Tectona grandis) in Bangladesh. Bangladesh Journal of Forest Science 27 (1): 16-24

Latif, M.A., Rahman, M.F., Das, S. 1995. Volume table for Acacia auriculiformis, Cassia siamea and Pinus caribaea in Bangladesh. Bangladesh Journal of Forest Science 24 (2): 22-30

Mahmood, H., Saha, C., Abdullah, S.M.R., Saha, S., Siddique, M.R.H. 2015b. Allometric biomass, nutrient and carbon stock models for Kandelia candel of the Sundarbans, Bangladesh. Trees DOI: 10.1007/s00468-015-1314-0

Mahmood, H., Shaikh, M.A.A., Saha, C., Abdullah, S.M.R., Saha, S., Siddique, M.R.H. 2016. Aboveground biomass, nutrients and carbon in Aegiceras corniculatum of the Sundarbans. Open Journal of Forestry 6 (2): 72-89

Mahmood, H., Siddique, M.R.H., Bose, A., Limon, S.H., Chowdhury, M.R.K. Saha, S. 2012. Allometry, above-ground biomass and nutrient distribution in Ceriops decandra (Griffith) Ding Hou dominated forest types of the Sundarbans mangrove forest, Bangladesh. Wetlands Ecology and Management 20: 539-548

Mahmood, H., Siddique, M.R.H., Saha, S., Abdullah, S.M.R. 2015a. Allometric models for biomass, nutrients and carbon stock in Excoecaria agallocha of the Sundarbans, Bangladesh. Wetlands Ecology and Management 23 (4): 765-774

Rahman, M.F., Das, S., Latif, M.A. 2001. Volume table for Koroi (albizia procera) and Arjun (Terminalia arjuna) trees planted in the central part of Bangladesh. Bangladesh Journal of Forest Science 30 (1): 39-46.

Rahman, M.F., Das, S., Reza, N.A., Chowdhury, J.A., Latif, M.A. 1994. Tree volume table for Keora (Sonneratia apetala Buch.-Ham) in the coastal plantation of Bangladesh. In: Latif, M.A. (ed.), Tree volume table for keora (Sonneratia apetala) and Baen (Avicennia officinalis) in the coastal plantation of Banglaesh. Bulletin 8, Forest Inventory Division, Bangladesh Forest Research Institute, Chittagong, 1-20 pp.

Rahman, M.M., Kamaluddin, M. 1996. Volume table for natural hybrid trees of Acacia mangium X Acacia auriculiformis in plantations of Bangladesh. Chittagong University Studies, 20 (1): 8994

Revilla, J.A.V., Ahmed, I.U., Hossain, A. 1998a. Forest Inventory of the Sundarbans Reserved Forest, Final Report, Volume 1. Mandala Agricultural Development Corporation and Forest Department, Ministry of Environment and Forests, Dhaka, Bangladesh

Revilla, J.A.V., Ahmed, I.U.., Saha, U.K. 1998b. Forest Inventory of the Natural Forest and Forest Plantations (Sylhet Forest Division), Final Report. Gob/Wb, Forest Resources Management Project, Technical Assistance Component. (Mandala Agricultural Development Corporation and Forest Department, Ministry of Environment and Forests, Dhaka, Bangladesh).

Roy, B. 2012. Species-specific allometric models for estimation of aboveground stem biomass of three dominant tree species at Satchari National park. Unpublished MS thesis. Department of Forestry and Environmental Science, ShahJalal University of Science and Technology, Sylhet, Bangladesh

Sarker, S.K., Das, N., Chowdhury, M.Q., Haque, M.M. 2013. Developing allometric equations for estimating leaf area and leaf biomass of Artocarpus chaplasha in Raghunandan Hill Reserve, Bangladesh. Southern Forests 75(1): 51-57

Sattar MA 1981. Some physical properties of 116 Bangladeshi timbers. Bulletin 7, Wood seasoning series, Forest Research Institute, Chittagong Bangladesh.

Sattar MA, Bhattacharjee DK, Kabir MF 1999. Physical and mechanical properties and uses of timbers of Bangladesh. Bangladesh Forest Research Institute, Chittagong, Bangladesh.

Siddique, M.R.H., Mahmood, H., Chowdhury, M.R.K. 2012. Allometric relationship for estimating above-ground biomass of Aegialitis rotundifolia Roxb. of Sundarbans mangrove forest, in Bangladesh. Journal of Forestry Research 23 (1): 23-28.

Sylvander, R., Latif, M.A., Karlsson, A. 2001. Forest inventory of the Sal forest of Bangladesh, Volume 1, Technical Report, Forestry Sector Project, Forest Department, Ministry of Environment and Forest, Dhaka

Ullah, M.R., Banik, G.R., RajibBanik. 2014. Developing Allometric Models for Carbon Stock Estimation in Eighteen Year Old Plantation Forests of Bangladesh. Jacobs Journal of Microbiology and Pathology 1(1): 006

Appendix 2. Species wise valid allometric equations in Bangladesh

Genus	Species	Local name	Family	Unite of Y	Vegetation Component	Equation
Senna	siamea	Minjiri	Leguminosae	kg	Total above-ground green biomass	Log (Green biomass) $=-1.5851+2.4855 * \log (\mathrm{DBH})$
Senna	siamea	Minjiri	Leguminosae	kg	Total above-ground green biomass	Log (Green biomass) $=-4.4303+2.4855 * \log (\mathrm{GBH})$
Senna	siamea	Minjiri	Leguminosae	kg	Total above-ground green biomass	Log (Green biomass) $=-2.0847+2.1723 * \log (\mathrm{DBH})+0.5141 *$ Log (Height)
Senna	siamea	Minjiri	Leguminosae	kg	Total above-ground green biomass	Log (Green biomass) $=-4.5714+2.1723 * \log (\mathrm{GBH})+0.5141 *$ Log (Height)
Senna	siamea	Minjiri	Leguminosae	kg	Stem green biomass	Log (Green biomass) $=-2.1442+2.5917 * \log (\mathrm{DBH})$
Senna	siamea	Minjiri	Leguminosae	kg	Stem green biomass	Log (Green biomass) $=-5.1110+2.5917 * \log (\mathrm{GBH})$
Senna	siamea	Minjiri	Leguminosae	kg	Stem green biomass	Log (Green biomass) $=-2.7095+2.2372 * \log (\mathrm{DBH})+0.5817 *$ Log (Height)
Senna	siamea	Minjiri	Leguminosae	kg	Stem green biomass	Log (Green biomass) $=-5.2705+2.2372 * \log (G B H)+0.5817 *$ Log (Height)
Senna	siamea	Minjiri	Leguminosae	kg	Branch green Biomass	Log (Green biomass) $=-2.2732+1.9752$ * Log (DBH)
Senna	siamea	Minjiri	Leguminosae	kg	Branch green Biomass	Log (Green biomass) $=-4.5343+1.9752 * \log (\mathrm{GBH})$
Senna	siamea	Minjiri	Leguminosae	kg	Branch green Biomass	Log (Green biomass) $=-3.2955+1.3142 * \log (\mathrm{DBH})+1.0521 *$ Log (Height)
Senna	siamea	Minjiri	Leguminosae	kg	Branch green Biomass	$\log ($ Green biomass $)=-4.7999+1.3142 * \log (\mathrm{GBH})+1.0521 *$ Log (Height)
Senna	siamea	Minjiri	Leguminosae	kg	Leaves and twigs green biomass	Log (Green biomass) $=-2.1219+1.9299 * \log (\mathrm{DBH})$
Senna	siamea	Minjiri	Leguminosae	kg	Leaves and twigs green biomass	Log (Green biomass) $=-4.3311+1.9299 * \log (\mathrm{GBH})$
Senna	siamea	Minjiri	Leguminosae	kg	Leaves and twigs green biomass	Log (Green biomass) $=-0.6183+2.8726 *$ Log (DBH) - $1.5471 *$ Log (Height)
Senna	siamea	Minjiri	Leguminosae	kg	Leaves and twigs green biomass	Log (Green biomass) $=-3.9067+2.8726 * \log (\mathrm{GBH})-1.5471 * \log$ (Height)
Senna	siamea	Minjiri	Leguminosae	kg	Stem and branch green biomass	Log (Green biomass) $=-2.0512+2.6006 * \log$ (DBH)
Senna	siamea	Minjiri	Leguminosae	kg	Stem and branch green biomass	Log (Green biomass) $=-5.0282+2.6006 * \log (\mathrm{GBH})$
Senna	siamea	Minjiri	Leguminosae	kg	Stem and branch green biomass	Log (Green biomass) $=-2.9256+2.0525 * \log (\mathrm{DBH})+0.8996 *$ Log (Height)
Senna	siamea	Minjiri	Leguminosae	kg	Stem and branch green biomass	$\log ($ Green biomass $)=-5.2752+2.0525 * \log (G B H)+0.8996 * \log$ (Height)
Senna	siamea	Minjiri	Leguminosae	kg	Branch, leaves and twigs green biomass	Log (Green biomass) $=-2.5173+2.281 * \log (\mathrm{DBH})$
Senna	siamea	Minjiri	Leguminosae	kg	Branch, leaves and twigs green biomass	Log (Green biomass) $=-2.9974+1.98 * \log (\mathrm{DBH})+0.494 * \log ($ Height $)$
Senna	siamea	Minjiri	Leguminosae	kg	Branch, leaves and twigs green biomass	Log (Green biomass) $=-5.264+1.98 * \log (\mathrm{GBH})+0.494 *$ Log (Height)

Genus	Species	Local name	Family	Unite of Y	Vegetation Component	Equation
Sonneratia	apetala	Keora	Lythraceae	m3	Total volume over bark	Volume $=0.0117+0.0000280056$ * DBH^(2) * Height
Sonneratia	apetala	Keora	Lythraceae	m3	Total volume over bark	Volume $=0.0117+0.00000283756 * G B H^{\wedge}(2) *$ Height
Sonneratia	apetala	Keora	Lythraceae	m3	Volume under bark	Volume $=0.0041+0.0000246325$ * DBH^(2) * Height
Sonneratia	apetala	Keora	Lythraceae	m3	Volume under bark	Volume $=0.0041+0.00000249579$ * GBH^(2) * Height
Avicennia	officinalis	Baen	Aviceniaceae	m3	Total volume over bark	Volume $=0.0089+0.0000264 * \mathrm{DBH}^{\wedge}(2) *$ Height
Avicennia	officinalis	Baen	Aviceniaceae	m3	Total volume over bark	Volume $=0.0089+0.00000267 *$ GBH^(2) * Height
Albizia	procera	Koroi	Mimosaceae	m3	Total volume over bark	Log (Volume) $=-12.0901+2.502194 *$ Log (GBH)
Albizia	procera	Koroi	Mimosaceae	m3	Total volume over bark	Log (Volume) $=-11.6632+1.941989 *$ Log (GBH) +0.754839 * Log (Height)
Terminalia	arjuna	Arjun	Combretacear	m3	Total volume over bark	Log (Volume) $=-11.1885+2.222144 * \log (\mathrm{GBH})$
Terminalia	arjuna	Arjun	Combretacear	m3	Total volume over bark	Log (Volume) $=-11.3794+1.896423$ * Log (GBH) $+0.653558 *$ Log (Height)
Shorea	robusta	Sal	Dipterocarpaceae	m3	Total volume over bark	Log (Volume) $=-9.1727759+2.5178944$ * DBH
Shorea	robusta	Sal	Dipterocarpaceae	m3	Total volume over bark	Log (Volume) $=-12.0554+2.5178944 *$ Log (GBH)
Shorea	robusta	Sal	Dipterocarpaceae	m3	Total volume over bark	Log (Volume) $=-9.615639+2.033071$ * Log (DBH) $+0.7361229 *$ Log (Height)
Shorea	robusta	Sal	Dipterocarpaceae	m3	Total volume over bark	Log (Volume) $=-11.938881+2.033071$ * Log (GBH) +0.7361229 * Log (Height)
Shorea	robusta	Sal	Dipterocarpaceae	m3	Total volume under bark	Volume $=0.0032556+0.0000269$ * DBH^(2) * Height
Shorea	robusta	Sal	Dipterocarpaceae	m3	Total volume under bark	Volume $=0.003255+0.0000027255$ * GBH^(2) * Height
Sonneratia	apetala	Keora	Lythraceae	m3	Total volume over bark	Volume $=0.0052-0.0022 * X+0.0005 * \mathrm{DBH}^{\wedge}(2)$
Sonneratia	apetala	Keora	Lythraceae	m3	Total volume over bark	Log (Volume) $=-9.1937+1.7683 * \log (\mathrm{DBH})+0.7358 *$ Log (Height)
Sonneratia	apetala	Keora	Lythraceae	m3	Total volume over bark	Volume $=0.0042-0.0017 *$ DBH +0.0005 * DBH^(2)
Sonneratia	apetala	Keora	Lythraceae	m3	Total volume over bark	Log (Volume) $=-9.2587+1.6463$ * Log (DBH) $+0.9138 *$ Log (Height)
Acacia	mangium	Mangium	Fabaceae	m3	Total volume over bark	Log (Volume) $=-8.209+2.2178 * \log (\mathrm{DBH})$
Acacia	mangium	Mangium	Fabaceae	m3	Total volume over bark	Log (Volume) $=-10.7488+2.2178 * \log (\mathrm{GBH})$
Acacia	mangium	Mangium	Fabaceae	m3	Total volume over bark	Log (Volume) $=-9.1426+1.7612 * \log (\mathrm{DBH})+0.83335 *$ Log (Height)
Acacia	mangium	Mangium	Fabaceae	m3	Total volume over bark	Log (Volume) $=-11.1587+1.7612 * \log (\mathrm{GBH})+0.83335 *$ Log (Height)
Acacia	mangium	Mangium	Fabaceae	m3	Total volume under bark	Log (Volume) $=-9.00226+2.3246 * \log (\mathrm{DBH})$
Acacia	mangium	Mangium	Fabaceae	m3	Total volume under bark	Log (Volume) $=-11.6633+2.3246$ * Log (GBH)

Genus	Species	Local name	Family	Unite of Y	Vegetation Component	Equation
Acacia	mangium	Mangium	Fabaceae	m3	Total volume under bark	Log (Volume) $=-10.2221+1.74054 * \log (\mathrm{DBH})+1.07596 *$ Log (Height)
Mixed				kg	Total above-ground green biomass	Log (Green biomass) $=-1.3933+2.39602 * \log (\mathrm{DBH})$
Mixed				kg	Total above-ground green biomass	Log (Green biomass) $=-4.136+2.39602 * \log (\mathrm{GBH})$
Mixed				kg	Total above-ground green biomass	Log (Green biomass) $=-2.228+1.81492 * \log (\mathrm{DBH})+0.85007 *$ Log (Height)
Mixed				kg	Total above-ground green biomass	$\log ($ Green biomass $)=-4.306+1.81492 * \log (\mathrm{GBH})+0.85007 *$ Log (Height)
Tectona	grandis	Teak	Lamiaceae	cft	Total volume over bark	Volume $=0.084$ * DBH^(2.263)
Tectona	grandis	Teak	Lamiaceae	cft	Total volume over bark	Volume $=0.000465 *$ DBH^$^{\wedge}(1.58) *$ Height^(1.603)
Acacia	auriculiformis	Akashmoni	Leguminosae	kg	Total above-ground green biomass	Log (Green biomass) $=-1.3577+2.4177$ * Log (DBH)
Acacia	auriculiformis	Akashmoni	Leguminosae	kg	Total above-ground green biomass	Log (Green biomass) $=-2.2782+1.9736 * \log (\mathrm{DBH})+0.8113 *$ Log (Height)
Acacia	auriculiformis	Akashmoni	Leguminosae	kg	Stem green biomass	Log (Green biomass) $=-2.3176+2.6075 * \log (\mathrm{DBH})$
Acacia	auriculiformis	Akashmoni	Leguminosae	kg	Stem green biomass	Log (Green biomass) $=-3.1661+2.1982 * \log (\mathrm{DBH})+0.7477 *$ Log (Height)
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Total volume over bark	Log (Volume) $=-8.208+2.2389 * \log (\mathrm{DBH})$
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Total volume over bark	Log (Volume) $=-10.7709+2.2389 *$ Log (GBH)
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Total volume over bark	Log (Volume) $=-9.125+1.918 * \log (\mathrm{DBH})+0.67988 *$ Log (Height)
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Total volume over bark	Log (Volume) $=-11.3205+1.918 * \log (\mathrm{GBH})+0.67988 *$ Log (Height)
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Total volume under bark	Log (Volume) $=-9.187+2.468 *$ Log (DBH)
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Total volume under bark	Log (Volume) $=-12.0121+2.468 * \log (\mathrm{GBH})$
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Total volume under bark	Log (Volume) $=-10.2398+2.100244 * \log (\mathrm{DBH})+0.780214 * \log ($ Height $)$
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Total volume under bark	Log (Volume) $=-12.6440+2.100244 * \log (\mathrm{GBH})+0.780214 * \log ($ Height $)$
Senna	siamea	Minjiri	Leguminosae	m3	Total volume over bark	Log (Volume) $=-8.602+2.4038 * \log (\mathrm{DBH})$
Senna	siamea	Minjiri	Leguminosae	m3	Total volume over bark	Log (Volume) $=-11.3536+2.4038 *$ Log (GBH)
Senna	siamea	Minjiri	Leguminosae	m3	Total volume over bark	Log (Volume) $=-9.514+1.871 * \log (\mathrm{DBH})+0.897 *$ Log (Height)
Senna	siamea	Minjiri	Leguminosae	m3	Total volume over bark	Log (Volume) $=-11.6557+1.871$ * Log (GBH) $+0.897 *$ Log (Height)
Senna	siamea	Minjiri	Leguminosae	m3	Total volume under bark	Log (Volume) $=-9.334+2.55686 *$ Log (DBH)
Senna	siamea	Minjiri	Leguminosae	m3	Total volume under bark	Log (Volume) $=-12.2632+2.55686 * \log (\mathrm{GBH})$
Senna	siamea	Minjiri	Leguminosae	m3	Total volume under bark	Log (Volume) $=-10.1766698+2.0641847 *$ Log (DBH) $+0.8290937 *$ Log (Height)
Senna	siamea	Minjiri	Leguminosae	m3	Total volume under bark	Log (Volume) $=-12.5396+2.064187 * \log (G B H)+0.8290937$ * Log (Height)

Genus	Species	Local name	Family	Unite of Y	Vegetation Component	Equation
Pinus	caribaea	Pine	Pinaceae	m3	Total volume over bark	Log (Volume) $=-8.7854+2.410755 * \log (\mathrm{DBH})$
Pinus	caribaea	Pine	Pinaceae	m3	Total volume over bark	Log (Volume) $=-11.545+2.410755 * \log (\mathrm{GBH})$
Pinus	caribaea	Pine	Pinaceae	m3	Total volume over bark	Log (Volume) $=-9.39412+1.867386 *$ Log (DBH) $+0.839034 *$ Log (Height)
Pinus	caribaea	Pine	Pinaceae	m3	Total volume over bark	Log (Volume) $=-11.5317+1.867386 * \log (G B H)+0.839034 * \log$ (Height)
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under bark	Log (Volume) $=-9.11552+2.483187 * \log ($ DBH $)$
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under bark	Log (Volume) $=-11.9580+2.483187 *$ Log (GBH)
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under bark	Log (Volume) $=-9.7505+1.935397 *$ Log (DBH) $+0.851715 *$ Log (Height)
Pinus	caribaea	Pine	Pinaceae	m3	Total volume under bark	Log (Volume) $=-11.9660+1.935397$ * Log (GBH) +0.851715 * Log (Height)
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Total volume over bark	Log (Volume) $=-11.839665+2.404568 * \log (\mathrm{GBH})$
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Total volume over bark	Log (Volume) $=-11.506528+1.973377$ * Log (GBH) +0.623823 * Log (Height)
Swietenia	macrophylla	Mahogany	Meliaceae	m3	Total volume over bark	Log (Volume) $=-12.52620808+2.5653795 * \log (\mathrm{GBH})$
Swietenia	macrophylla	Mahogany	Meliaceae	m3	Total volume over bark	Log (Volume) $=-12.4361459+1.8661846 * \log (\mathrm{GBH})+1.2282822 *$ Log (Height)
Albizia	spp	Koroi	Mimosaceae	m3	Total volume over bark	Log (Volume) $=-12.8715358+2.6994968 * \log (\mathrm{GBH})$
Albizia	spp	Koroi	Mimosaceae	m3	Total volume over bark	Log (Volume) $=-12.4+1.7131$ * Log (GBH) $+1.58245 *$ Log (Height
Dalbergia	sissoo	Sissoo	Fabaceae	m3	Total volume over bark	Log (Volume) $=-12.427775+2.6056676$ * Log (GBH)
Dalbergia	sissoo	Sissoo	Fabaceae	m3	Total volume over bark	Log (Volume) $=-12.5189939+1.9800535 *$ Log (GBH) $+1.0775148 *$ Log (Height)
Acacia	nilotica	Babla	Mimosaceae	m3	Total volume over bark	Log (Volume) $=-11.2782859+2.34743 * \log (\mathrm{GBH})$
Acacia	nilotica	Babla	Mimosaceae	m3	Total volume over bark	Log (Volume) $=-11.875835+1.8823999 * \log (\mathrm{GBH})+1.0819988 *$ Log (Height)
Albizia	saman	Rain tree	Mimosaceae	m3	Total volume over bark	Log (Volume) $=-12.287524+2.5086408 * \log (\mathrm{GBH})$
Albizia	saman	Rain tree	Mimosaceae	m3	Total volume over bark	Log (Volume) $=-12.3213818+1.8912934 * \log (\mathrm{GBH})+1.183443 *$ Log (Height)
Ceriops	decandra	Goran	Rhizophoraceae	g	Leaf	Oven-dried biomass $=2.99 *(\text { Collar girth })^{\wedge}(1.95)$
Ceriops	decandra	Goran	Rhizophoraceae	g	Branch	Oven-dried biomass $=0.23 *($ Collar girth)^^(3.09)
Ceriops	decandra	Goran	Rhizophoraceae	g	Bark	Oven-dried biomass $=0.77 *(\text { Collar girth })^{\wedge}(2.23)$
Ceriops	decandra	Goran	Rhizophoraceae	g	Stem with bark	Oven-dried biomass $=3.22$ * (Collar girth)^(2.27)

Genus	Species	Local name	Family	Unite of Y	Vegetation Component	Equation
Ceriops	decandra	Goran	Rhizophoraceae	g	Total above-ground	Oven-dried biomass $=4.70 *(\text { Collar girth })^{\wedge}(2.41)$
Aegialitis	rotundifolia	Nuniya	Plumbaginaceae	g	Leaf	Oven-dried biomass $=13.96$ * (Collar girth) -12.38 * (Height)^(2)- 0.01 * (Height at girth measurement point)^(2) + 0.08 * (Collar girth) * (Height) * (Height at girth measurement point)
						Oven-dried biomass $=3.09$ * (Collar girth)^(2) - $22.887{ }^{*}(\text { Height })^{\wedge}(2)+0.13$ *
Aegialitis	rotundifolia	Nuniya	Plumbaginaceae	g	Branch	(Collar girth) * (Height) * (Height at girth measurement point)
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Leaf	Log 10 (Oven-dried biomass) $=0.9256$ * Log 10 (DBH^(2)) - 2.133
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Branch	Log 10 (Oven-dried biomass) = 1.1656 * Log $10\left(\right.$ DBH $\left.^{\wedge}(2)\right)-1.7047$
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Bark	Log 10 (Oven-dried biomass) $=1.0824 * \log 10\left(\right.$ DBH $\left.^{\wedge}(2)\right)-1.7568$
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Stem without bark	Log 10 (Oven-dried biomass) = 1.0927 * Log 10 (DBH^(2)) - 1.0275
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Total above-ground	Log 10 (Oven-dried biomass) = $1.0996 * \log 10\left(\right.$ DBH $\left.^{\wedge}(2)\right)-0.8572$
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Total above-ground	Log 10 (Nitrogen) = 1.0972 * Log $10\left(\right.$ DBH $\left.^{\wedge}(2)\right)-3.0845$
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Total above-ground	Log 10 (Phosphorus) = $1.0947 * \log 10\left(\mathrm{DBH}^{\wedge}(2)\right)-5.6790$
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Total above-ground	Log 10 (Potassium) = 1.0990 * Log $10\left(\mathrm{DBH}^{\wedge}(2)\right)-3.0370$
Excoecaria	agallocha	Gewa	Euphorbiaceae	kg	Total above-ground	Log 10 (Carbon) = 1.1 * Log $10\left(\right.$ DBH $\left.^{\wedge}(2)\right)-1.1937$
Kandelia	candel	Goria	Rhizophoraceae	kg	Leaf	Oven-dried biomass $=0.014 *(\text { DBH })^{\wedge}(2)+0.03$
Kandelia	candel	Goria	Rhizophoraceae	kg	Branch	Sqrt (Oven-dried biomass) $=0.29$ * (DBH) - 0.21
Kandelia	candel	Goria	Rhizophoraceae	kg	Bark	Sqrt (Oven-dried biomass) $=0.66$ * sqrt (DBH) - 0.57
Kandelia	candel	Goria	Rhizophoraceae	kg	Stem without bark	Sqrt (Oven-dried biomass) $=1.19$ * Sqrt (DBH) - 1.02
Kandelia	candel	Goria	Rhizophoraceae	kg	Total above-ground	Oven-dried biomas $=0.21 *(\text { DBH })^{\wedge}(2)+0.12$
Kandelia	candel	Goria	Rhizophoraceae	kg	Total above-ground	Nitrogen $=0.39$ * (DBH)^(2) + 0.49
Kandelia	candel	Goria	Rhizophoraceae	kg	Total above-ground	Phosphorus $=0.77{ }^{*}(\mathrm{DBH})^{\wedge}(2)+0.14$
Kandelia	candel	Goria	Rhizophoraceae	kg	Total above-ground	Potassium $=0.87$ * (DBH)^(2) + 0.07
Kandelia	candel	Goria	Rhizophoraceae	kg	Total above-ground	Carbon $=0.09$ (DBH$)^{\wedge}(2)+0.05$
Acacia	auriculiformis	Akashmoni	Leguminosae	kg	Stem biomass	Oven-dried biomass $=0.092486$ * ((DBH) * (Height) $)^{\wedge}(1.4765)$
Albizia	saman	Rain tree	Mimosaceae	m3	Stem volume	Log (Volume) $=-8.3013+2.1746$ * Log (DBH)

Genus	Species	Local name	Family	Unite of Y	Vegetation Component	Equation
Albizia	saman	Rain tree	Mimosaceae	m3	Stem volume	Log (Volume) $=-9.1864+1.8502 * \log ($ DBH $)+0.8234 *$ Log (Height)
Mixed Shrub				g	Above-ground biomass	Oven-dried biomass $=0.696735+0.536662$ ((Biomass)
Mixed Shrub				g	Above-ground biomass	Carbon $=-0.379625+0.500132$ ((iomass)
Acacia	mangium	Mangium	Fabaceae	kg	Total above-ground green biomass	Log (Green biomass) $=-1.4659+2.3256 *$ Log (DBH)
Acacia	mangium	Mangium	Fabaceae	kg	Total above-ground green biomass	Log (Green biomass) $=-4.1281+2.3256 * \log (\mathrm{GBH})$
Acacia	mangium	Mangium	Fabaceae	kg	Total above-ground green biomass	Log (Green biomass) $=-1.7073+2.1922 * \log (\mathrm{DBH})+0.2331 *$ Log (Height)
Acacia	mangium	Mangium	Fabaceae	kg	Total above-ground green biomass	Log (Green biomass) $=-4.2168+2.1922 * \log (\mathrm{GBH})+0.2331 *$ Log (Height)
Acacia	mangium	Mangium	Fabaceae	kg	Stem green biomass	Log (Green biomass) $=-2.2782+2.5213 *$ Log (DBH)
Acacia	mangium	Mangium	Fabaceae	kg	Stem green biomass	Log (Green biomass) $=-5.1644+2.5213 *$ Log (GBH)
Acacia	mangium	Mangium	Fabaceae	kg	Stem green biomass	Log (Green biomass) $=-2.7344+2.2692 * \log (\mathrm{DBH})+0.4406 *$ Log (Height)
Acacia	mangium	Mangium	Fabaceae	kg	Stem green biomass	Log (Green biomass) $=-5.3320+2.2692 * \log (\mathrm{GBH})+0.4406 *$ Log (Height)
Acacia	mangium	Mangium	Fabaceae	kg	Stem and branch green biomass	Log (Green biomass) $=-1.8493+2.3906 *$ Log (DBH)
Acacia	mangium	Mangium	Fabaceae	kg	Stem and branch green biomass	Log (Green biomass) $=-4.5859+2.3906 *$ Log (GBH)
Acacia	mangium	Mangium	Fabaceae	kg	Stem and branch green biomass	Log (Green biomass) $=-2.4276+2.0709 * \log (\mathrm{DBH})+0.5586 *$ Log (Height)
Acacia	mangium	Mangium	Fabaceae	kg	Stem and branch green biomass	Log (Green biomass) $=-4.7982+2.0709 * \log (\mathrm{GBH})+0.5586 *$ Log (Height)
Artocarpus	chaplasha	Chapalish	Moraceeae	kg	Leaf	Log (Oven-dried biomass) $=-4.44814+2.0483 * \log (D B H)$ Log (Oven-dried biomass) $=-1.34008+0.83123 * \log (D B H)+0.47969 * \log$
Lagerstroemia	speciosa	Jarul	Lythraceae	kg	Leaf	(Height)
Artocarpus	chaplasha	Chapalish	Moraceeae	kg	Stem biomass	(Wood density))
Tectona	grandis	Teak	Lamiaceae	kg	Stem biomass	Log (Oven-dried biomass) $=0.07908+0.89315 * \log \left((D B H)^{\wedge}(2) *(\right.$ Height $) *$ (Wood density))
Albizia	richardiana	Rajkoroi	Leguminosae	m3	Total volume over bark	Log (Volume) $=-10.996396+2.247808 * \log (\mathrm{GBH})$
Albizia	richardiana	Rajkoroi	Leguminosae	m3	Total volume over bark	Log (Volume) $=-10.831293+1.699319$ * Log (GBH) +0.813706 * Log (Height)
Mixed				m3	Total volume over bark	Log (Volume) $=-9.4209+1.7480$ Log (DBH) +0.9310 * Log (Height)

Genus	Species	Local name	Family	Unite of Y	Vegetation Component	Equation
Eucalyptus	brassiana	Eucalyptus	Myrtaceae	m3	Total volume over bark	Log (Volume) $=-9.5783+1.6783 * \log ($ DBH $)+1.0483 *$ Log (Height $)$
Eucalyptus	tereticornis	Eucalyptus	Myrtaceae	m3	Total volume over bark	Log (Volume) $=-9.4264+1.6850$ * Log (DBH) $+0.9840 *$ Log (Height)
Eucalyptus	camaldulensis	Eucalyptus	Myrtaceae	m3	Total volume over bark	Log (Volume) $=-9.3520+1.8055 * \log (\mathrm{DBH})+0.8590 *$ Log (height)
Artocarpus	chaplasha	Chapalish	Moraceeae	m3	Total volume over bark	Log (Volume) $=-8.179774+2.24074 * \log (\mathrm{DBH})$
Artocarpus	chaplasha	Chapalish	Moraceeae	m3	Total volume over bark	Log (Volume) $=-8.9449526+1.82851$ * Log (DBH) +0.735381 * Log (Height)
Gmelina	arborea	Gamar	Lamiaceae	m3	Total volume over bark	Log (Volume) $=-7.9022697+2.1472 *$ Log (DBH)
Gmelina	arborea	Gamar Telya	Lamiaceae	m3	Total volume over bark	Log (Volume) $=-8.4687076+1.63502 * \log (\mathrm{DBH})+0.784847$ * Log (Height)
Dipterocarpus	turbinatus	garjan Telya	Dipterocarpaceae	m3	Total volume over bark	$\begin{aligned} & \text { Log }(\text { Volume })=-8.5116354+2.35556 * \log (D B H) \\ & \text { Volume }=0.000390878+0.00064549776 *(D B H)^{\wedge}(2)+0.0001478277 *(D B H) * \end{aligned}$
Dipterocarpus	turbinatus	garjan	Dipterocarpaceae	m3	Total volume over bark	(Height) +0.00002407 * (DBH)^(2) * (Height)
Falcataria	moluccana	Moluccna	Leguminosae	m3	Stem Volume over bark	Log (Volume) $=-8.9942+1.4963 * \log (\mathrm{DBH})+1.1461 * \log ($ Height $)$
Falcataria	moluccana	Moluccna	Leguminosae	m3	Stem Volume over bark	Log (Volume) $=-10.707106+1.4963 * \log (G B H)+1.1461 *$ Log (Height)
Hevea	brasiliensis	Rubber	Euphorbiaceae	m3	Total volume over bark	Log (Volume) $=-10.5628+2.1502 * \log (\mathrm{GBH})$
Hevea	brasiliensis	Rubber	Euphorbiaceae	m3	Total volume over bark	Log (Volume) $=-11.2768+1.8795 * \log (G B H)+0.6928 * \log ($ Height $)$
Hevea	brasiliensis	Rubber	Euphorbiaceae	m3	Total volume under bark	Log (Volume) $=-10.6451+2.1607 *$ Log (GBH)
Hevea	brasiliensis	Rubber	Euphorbiaceae	m3	Total volume under bark	Log (Volume) $=-11.3509+1.8930$ * Log (GBH) $+0.6848 *$ Log (Height)
Hevea	brasiliensis	Rubber	Euphorbiaceae	m3	Total volume over bark	Log (Volume) $=-10.4946+2.1365 * \log (\mathrm{GBH})$
Hevea	brasiliensis	Rubber	Euphorbiaceae	m3	Total volume over bark	Log (Volume) $=-11.355075+1.90505 * \log (G B H)+0.67956 *$ Log (Height)
Hevea	brasiliensis	Rubber	Euphorbiaceae	m3	Total volume under bark	Log (Volume) $=-10.58495+2.14861 * \log (\mathrm{GBH})$
Hevea	brasiliensis	Rubber	Euphorbiaceae	m3	Total volume under bark	Log (Volume) $=-11.43443+1.92013$ * Log (GBH) +0.670876 * Log (Height)
Hevea	brasiliensis	Rubber	Euphorbiaceae	m3	Total volume over bark	Volume $=0.01097-0.00064 *(G B H)+0.000055 *(G D B) \wedge(2)$
Hevea	brasiliensis	Rubber	Euphorbiaceae	m3	Total volume under bark	Volume $=0.016931-0.00085$ * (GBH) + 0.000055 * (GBH)^(2)
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Timber volume over bark	Volume $=0.027119694+0.00000240953$ * (GBH)^(2) * (Height)

Genus	Species	Local name	Family	Unite of Y	Vegetation Component	Equation
Acacia	auriculiformis	Akashmoni	Leguminosae	m3	Timber volume over bark	Volume $=0.02059085+0.00000257258 *(G B H)^{\wedge}(2) *$ (Height)
Acacia	auriculiformis	Akashmoni	Leguminosae	kg	Branch and stem less than 30 cm girth to 10 cm girth green biomass	Green biomass $=17.17526+0.011026$ * $(\mathrm{GBH})^{\wedge}(2)$
Eucalyptus	camaldulensis	Eucalyptus	Myrtaceae	m3	Timber volume over bark	Volume $=0.003083594+0.00000291538 *(G B H) \wedge(2) *$ (Height)
Eucalyptus	camaldulensis	Eucalyptus	Myrtaceae	m3	Timber volume over bark	Volume $=0.005034521+0.00000269095{ }^{*}(\mathrm{GBH})^{\wedge}(2){ }^{*}$ (Height)
						Volume $=0.076339-0.00058066$ * (Height) +0.000016216 * (GBH)^(2) +
Eucalyptus	camaldulensis	Eucalyptus	Myrtaceae	m3	Total volume over bark	0.0000032565 * (GBH)^(2) * (Height)
Eucalyptus	camaldulensis	Eucalyptus	Myrtaceae	m3	Timber volume over bark	
Acacia	mangium	Mangium	Fabaceae	m3	Total volume over bark	Volume $=0.0379401-0.0027469$ * (GBH) $+0.000099945{ }^{*}(\mathrm{GBH})^{\wedge}(2)$
						Volume $=0.01368013-0.00018226$ * (Height) +0.000005503 * (GBH)^(2) +
Acacia	mangium	Mangium	Fabaceae	m3	Total volume over bark	0.00000352188 * (GBH)^(2) * (Height)
Acacia	mangium	Mangium	Fabaceae	m3	Timber volume over bark	Volume $=0.047423-0.00387$ * (GBH) +0.000109 * (GBH)^(2)
						Volume $=-0.04085+0.00437656$ * (Height) +0.0000627199 * (GBH)^(2) +
Acacia	mangium	Mangium	Fabaceae	m3	Total volume over bark	0.00000248335 * (GBH)^(2) * (Height)
Acacia	mangium	Mangium	Fabaceae	m3	Timber volume over bark	Volume $=0.010632025+0.00000289124 *(G B H)^{\wedge}(2) *$ (Height)
						Volume $=0.012282107+0.00168945$ * (Height) $-0.000019455{ }^{*}(\mathrm{GBH})^{\wedge}(2)+$
Dalbergia	sissoo	Sissoo	Fabaceae	m3	Total volume over bark	0.00000392037 * (GBH)^(2) * (Height)
Dalbergia	sissoo	Sissoo	Fabaceae	m3	Total volume under bark	Log (Volume) $=-12.14678171+2.49978991 *$ Log (GBH)
Dalbergia	sissoo	Sissoo	Fabaceae	m3	Total volume under bark	Log (Volume) $=-11.8405276+2.07000287$ * Log (GBH) +0.6152993 * Log (Height)
Swietenia	macrophylla	Mahogany	Meliaceae	m3	Total volume under bark	Log (Volume) $=-12.045383+2.460647 * \log (\mathrm{GBH})$
Swietenia	macrophylla	Mahogany	Meliaceae	m3	Total volume under bark	Log (Volume) $=-11.716535+2.084968$ * Log (GBH) +0.534389 * Log (Height)

Genus	Species	Local name	Family	Unite of Y	Vegetation Component	Equation
Albizia	spp	Koroi	Mimosaceae	m3	Total volume under bark	Log (Volume) $=-12.093533+2.463398 *$ Log (GBH)
Albizia	spp	Koroi	Mimosaceae	m3	Total volume under bark	Log (Volume) $=-11.961135+1.967741$ * Log (GBH) +0.907724 * Log (Height)
Eucalyptus	camaldulensis	Eucalyptus	Myrtaceae	m3	Total volume under bark	Log (Volume) $=-11.177929+2.297689 *$ Log (GBH)
Eucalyptus	camaldulensis	Eucalyptus	Myrtaceae	m3	Total volume under bark	Log (Volume) $=-11.523307+1.911628$ * Log (GBH) +0.738982 * Log (Height)
Melia	azadarach	Bokain, Ghora neem	Meliaceae	m3	Total volume under bark	Log (Volume) $=-11.041653+2.1705 *$ Log (GBH)
Melia	azadarach	Bokain, Ghora neem	Meliaceae	m3	Total volume under bark	Log (Volume) $=-10.962743+1.888957$ * Log (GBH) +0.505435 * Log (Height)
Mangifera	indica	Am	Anacardiaceae	m3	Total over bark volume	Log (Volume) $=-11.27269+2.24506 * \log (\mathrm{GBH})$
Mangifera	indica	Am	Anacardiaceae	m3	Total over bark volume	Log (Volume) $=-11.25377+1.96697 * \log (\mathrm{GBH})+0.52237 *$ Log (Height)
Lannea	coromandelica	Badi	Anacardiaceae	m3	Total over bark volume	Log (Volume) $=-11.519102+2.01724 * \log (\mathrm{GBH})+0.56356 *$ Log (Height)
Syzygium	cumini	Kalojam	Myrtaceae	m3	Total over bark volume	Log (Volume) $=-11.24854+2.24804 * \log (\mathrm{GBH})$
Artocarpus	heterophyllus	Kathal	Moraceeae	m3	Total over bark volume	Log (Volume) $=-11.06320+2.18203 * \log (\mathrm{GBH})$
Artocarpus	heterophyllus	Kathal	Moraceeae	m3	Total over bark volume	Log (Volume) $=-10.99533+1.80823$ * Log (GBH) +0.68951 * Log (Height)
Albizia	spp	Koroi	Mimosaceae	m3	Total over bark volume	Log (Volume) $=-11.50692+2.31757{ }^{*}$ Log (GBH)
Albizia	spp	Koroi	Mimosaceae	m3	Total over bark volume	Log (Volume) $=-11.19651+1.85690 * \log (\mathrm{GBH})+0.67878 *$ Log (Height)
Swietenia	macrophylla	Mahogany	Meliaceae	m3	Total over bark volume	Log (Volume) $=-11.46122+2.29592 * \log (\mathrm{GBH})$
Swietenia	macrophylla	Mahogany	Meliaceae	m3	Total over bark volume	Log (Volume) $=-11.27102+1.88064 * \log (\mathrm{GBH})+0.64629 *$ Log (Height)
Azadirachta	indica	Neem	Meliaceae	m3	Total over bark volume	Log (Volume) $=-11.33340+2.25814 * \log (\mathrm{GBH})$
Azadirachta	indica	Neem	Meliaceae	m3	Total over bark volume	Log (Volume) $=-11.42823+1.89235 *$ Log (GBH) $+0.71493 *$ Log (Height)
Aphanamixis	polystachya	Pitraj	Meliaceae	m3	Total over bark volume	Log (Volume) $=-11.25645+2.25821 * \log (\mathrm{GBH})$
Aphanamixis	polystachya	Pitraj	Meliaceae	m3	Total over bark volume	Log (Volume) $=-11.25528+1.98544 * \log (\mathrm{GBH})+0.47163$ * Log (Height)
Albizia	saman	Rain tree	Mimosaceae	m3	Total over bark volume	Log (Volume) $=-11.37623+2.26924 * \log (\mathrm{GBH})$
Albizia	saman	Rain tree	Mimosaceae	m3	Total over bark volume	Log (Volume) $=-11.31983+1.91118 * \log (\mathrm{GBH})+0.63606 *$ Log (Height)
Breonia	chinensis	Kadam	Rubiaceae	m3	Total volume over bark	Log (Volume) $=-10.4647+2.3911 * \log (\mathrm{DBH})+0.6373 *$ Log (Height)
Dipterocarpus	turbinatus	Telya garjan	Dipterocarpaceae	m3	Total volume over bark	Log (Volume) $=-9.5258+2.1229 * \log (\mathrm{DBH})+0.5993 *$ Log (Height)
Lagerstroemia	speciosa	Jarul	Lythraceae	m3	Total volume over bark	Log (Volume) $=-9.6744+2.1065$ * Log (DBH) +0.6675 * Log (Height)

Genus	Species	Local name	Family	Unite of Y	Vegetation Component	Equation
Xylia	xylocarpa	Lohakat, Pyinkado	Leguminosae	m3	Total volume over bark	Log (Volume) $=-9.4303+2.0988 * \log (\mathrm{DBH})+0.6042 *$ Log (Height)
Shorea	robusta	Sal	Dipterocarpaceae	m3	Total volume over bark	Log (Volume) $=-10.0253+2.1163 * \log (\mathrm{DBH})+0.7588 * \log$ (Height)
Sonneratia	apetala	Keora	Lythraceae	m3	Total volume over bark	Log (Volume) $=-8.66152+1.5856 * \log (\mathrm{DBH})+0.77152$ * Log (Height)
Sonneratia	apetala	Keora	Lythraceae	m3	Total volume over bark	Log (Volume) $=-9.29715+1.70514 * \log (\mathrm{DBH})+0.95088 * \log$ (Height)
Sonneratia	apetala	Keora	Lythraceae	m3	Total volume over bark	Log (Volume) $=-9.23507+1.69673 * \log (\mathrm{DBH})+0.92309 * \log$ (Height)
Sonneratia	apetala	Keora	Lythraceae	m3	Total volume over bark	Log (Volume) $=-8.75215+1.75034 * \log (\mathrm{DBH})+0.64233 * \log$ (Height)
Aegiceras	corniculatum	Khulshi	Myrsinaceae	kg	Leaf	Log 10 (Oven-dried biomass) $=0.76 * \log 10(($ DBH^$(2))-1.39$
Aegiceras	corniculatum	Khulshi	Myrsinaceae	kg	Bark	Log 10 (Oven-dried biomass) $=1.04 * \log 10(($ DBH^(2)) - 1.80
Aegiceras	corniculatum	Khulshi	Myrsinaceae	kg	Stem without bark	Log 10 (Oven-dried biomass) $=1.04 * \log 10($ (DBH^(2)) -0.99
Aegiceras	corniculatum	Khulshi	Myrsinaceae	kg	Total above-ground	Sqrt (Oven-dried biomass) $=0.48 *$ DBH - 0.13
Aegiceras	corniculatum	Khulshi	Myrsinaceae	g	Total above-ground	Sqrt (Nitrogen) $=0.67$ * DBH +0.11
Aegiceras	corniculatum	Khulshi	Myrsinaceae	g	Total above-ground	Sqrt (Phosphorus) $=0.94 *$ DBH +0.08
Aegiceras	corniculatum	Khulshi	Myrsinaceae	g	Total above-ground	Sqrt (Potassium) $=1.06$ * DBH - 0.18
Aegiceras	corniculatum	Khulshi	Myrsinaceae	kg	Total above-ground	Sqrt (Carbon) $=0.33$ * DBH - 0.09

Appendix 3. Distribution of allometric equations in different ecoregions of Bangladesh

Appendix 4. Steps in the development of biomass and volume allometric equations

[^0]: - Plant ecology (Population and Ecosystem)
 - Geographical location (Longitude and Latitude, Ecoregions)
 - Equation parameters (Variable characters and ranges)
 - Tree vegetation components (Bark, Root, Stump etc.)
 - Taxonomical description (Family, Genus, Species, Local name)
 - Statistical Information (R2, adjusted R2, bias correction, RMSE and standard error of mean)
 - Bibliography

