

Proceedings of the training-of-trainers workshop on the AFOLU GHG inventory

Bangladesh Forest Department 23 – 27 April 2017

The UN-REDD Programme, implemented by FAO, UNDP and UNEP, has two components: (i) assisting in developing countries to prepare and implement national REDD strategies and mechanisms; (ii) supporting the development of normative solutions and standardized approaches based on sound science for a REDD instrument linked with the UNFCCC. The programme helps empower countries to manage their REDD processes and will facilitate access to financial and technical assistance tailored to the specific needs of the countries.

The application of UNDP, UNEP and FAO rights-based and participatory approaches will also help ensure the rights of indigenous and forest-dwelling people are protected and the active involvement of local communities and relevant stakeholders and institutions in the design and implementation of REDD plans.

The programme is implemented through the UN Joint Programmes modalities, enabling rapid initiation of programme implementation and channelling of funds for REDD efforts, building on the in-country presence of UN agencies as a crucial support structure for countries. The UN-REDD Programme encourage coordinated and collaborative UN support to countries, thus maximizing efficiencies and effectiveness of the organizations' collective input, consistent with the "One UN" approach advocated by UN members.

The UN-REDD Bangladesh National Program is implemented by the Bangladesh Forest Department under the leadership of Ministry of Environment and Forests. United Nations Development Program (UNDP) and Food and Agriculture Organization (FAO) are the two implementing partners.

Contacts

Rakibul Hassan Mukul Project Director UN-REDD Bangladesh National Programme Bangladesh Forest Department Email: <u>pd-unredd@bforest.gov.bd</u>

Matieu Henry Chief Technical Advisor Food & Agriculture Organization of the United Nations Email: <u>matieu.henry@fao.org</u>

Suggested Citation: **Poultouchidou, A., Islam, K. M. N., Birigazzi, L. & Akhter, M.** 2017. Proceedings of the training-of-trainers workshop on the AFOLU GHG inventory. 23-27 April 2017, Dhaka, Bangladesh Forest Department, Food and Agriculture Organization of the United Nations.

Disclaimer

This report is designed to reflect the activities and progress related to UNJP/BGD/057/UNJ UN-REDD Bangladesh National Programme. It does not reflect the official position of the supporting international agencies including FAO and UNDP and should not be used for official purposes. Should readers find any errors in the document or would like to provide comments for improving the quality they are encouraged to contact one of above contacts.

EXECUTIVE SUMMARY

A five-day training workshop on GHG inventory for the AFOLU sector was held at the Bangladesh Bureau of Statistics from 23 to 27 April 2017. The workshop was organized under the UN-REDD National Programme with support from FAO and Forest Department. Representatives from four national universities including IFESCU, Khulna, SUST, BSMRAU, as well as Forest Department and Department of Environment participated in the workshop. In total, 13 participants (11 male and 2 female) followed the workshop.

The overall objective of this activity was to provide training-to-trainers and develop GHG national experts who would then be equipped to train others, including undergraduate and graduate students. This workshop aimed to contribute to the strengthening of academic capacities on issues related to GHG inventory for the AFOLU sector. The workshop included several presentations, group discussions and exercises in which participants had to calculate emissions and removals of CO₂ and non-CO₂ gases that derive from human activities associated with the AFOLU sector.

Participants highlighted the data gaps as well as the unavailability of reliable data that hinder the quality of national GHG inventory. In addition, participants recognized the need to improve the availability and robustness of country-specific emission factors.

Executive Summary
Contents 4
1. Introduction
2. Objectives
3. Summary of the training
3.1 Summary of the theoretical part of the workshop
4. Recommendations for next steps 11
5. Reference
Appendix 1. Agenda 13
Appendix 2. Participant List
Appendix 3. Evaluation
Appendix 4. Supplementary Material

CONTENTS

1. INTRODUCTION

The preparation of a GHG inventory (GHG-I) is an essential element towards a greener economy while reducing GHG emissions and climate change. Capacity building is considered an integral part of all activities related to the preparation and maintenance of a GHG-I. A critical barrier to accurate GHG-I is the limited availability of national GHG expertise, as well as the lack of stable and skilled team that has the capacity to work on various reporting schemes including national communications, biennial updated reports, nationally determined contributions, etc.

Since 2012, FAO in collaboration with the Bangladesh Forest Department has implemented several training workshops (Akhter, 2015; Akhter & Shaheduzzaman, 2012; Islam, Poultouchidou, Akhter, & Henry, 2016; Poultouchidou, Birigazzi, & Akhter, 2016a, 2016b) on GHG inventory for the AFOLU sector. The objective of these workshops was to train individuals from various governments departments and academic institutions on how to compile GHG data for the AFOLU sector. All training activities followed the IPCC guidance and guidelines and are in line with international reporting requirements under the UNFCCC.

However, the capacity building efforts are not enough to ensure the sustainability of the GHG inventory technical expertise. FAO in collaboration with the Forest Department plan activities to strengthen academic capacities on GHG inventory and scale up the number of skilled human resources. The ultimate objective of these activities is to create a critical mass of people equipped with the necessary knowledge and skills on the GHG compilation for the AFOLU sector.

In this context, capacity building activities have been planned and implemented involving national universities with forestry and environmental sciences degree programs. This is important as universities have the potential to become capacity building providers who can train and educate on a regular and long term basis undergraduate and graduate students. The involvement of universities in these activities include curricula improvements through the integration of GHG issues and implementation of training-of-trainers workshops to maintain and increase the number of GHG expertise who would then be able to train others including university students.

In this context, FAO in collaboration with the Bangladesh Forest Department organized a five-day training-oftrainers workshop on AFOLU GHG inventory. The workshop was implemented from 23 to 27 April 2017 at the Bangladesh Bureau of Statistics (BBS) in Dhaka. In total 13 representatives from four national universities, forest department and Department of Environment participated in the workshop. The list of participants and the agenda of the workshop are given in Appendix.

2. OBJECTIVES

The general objective of this training-of-trainers GHG workshop is to develop GHG national experts who would then be equipped to train others, including undergraduate and graduate students. The specific objectives of this workshop were to

Train academic teachers on how to compile AFOLU GHG data following the UNFCCC Guidance and IPCC Guidelines;

- Familiarize participants with the challenges when preparing and updating the national GHG inventory for the AFOLU sector;
- Establish a team of qualified GHG trainers;
- > Maintain and enhance the number of skilled national GHG expertise
- > Enhance academic capacities on issues related to AFOLU GHG inventory.

3. SUMMARY OF THE TRAINING

3.1 Summary of the theoretical part of the workshop

The following points summarize the important concept and issues that were covered during the theoretical sessions of the workshop.

The AFOLU sector is responsible for $\sim 10 - 12$ GtCO₂eq yr⁻¹ of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. However, the AFOLU sector is the only sector with sources and sinks of greenhouse gases and therefore can be part of the solution to climate change mitigation through sustainable land management practices.

According to the Initial National communication submitted to the UNFCCC by Bangladesh in 1994, the AFOLU sector was responsible for 73% of total national emissions. In 2005, The second national communication reported that 52% of total national emissions derived from the AFOLU sector. Therefore, in Bangladesh the AFOLU is a sector with great mitigation potential.

When it comes to the compilation and maintenance of the national GHG inventory several challenges are identified in Bangladesh. These difficulties are related to the availability of reliable data, lack of robust institutional arrangements, absence of official institutional arrangements for data sharing, insufficient documentation and archiving, lack of national GHG experts that retain over time, lack of knowledge regarding the application of the IPCC methodology.

It is important to provide accurate estimates of GHG emissions and removals. This will enable the country to identify the major sources and sinks of greenhouse gases, make more informed policy decisions with respect to appropriate response measures, provide information on the utilization of natural resources as well as information to address other environmental issues. In addition, compilation of a national GHG inventory will enable the country to identify the national data gaps that if filled may be beneficial for other purposes.

A complete national GHG inventory should be able to capture **all the land categories** (forestland, cropland, wetland, grassland, settlements, other land) in the country without duplication.

IPCC identifies three approaches for land representation. **Approach 1** (probably the most common) uses area datasets likely to have been prepared for other purposes such as forestry or agricultural statistics. **Approach 2** provides a national or regional-scale assessment of not only the losses or gains in the area of specific land categories but what these changes represent (i.e., changes from and to a category). **Approach 3** requires spatially explicit observations of land use and land-use change

According to the IPCC methodology, three tiers are provided that describe the level of methodological complexity. **Tier 1** methods are the simplest to use for which equations and default parameters values are provided in the IPCC Guidelines. **Tier 2** methods use country-specific emissions factors that are more appropriate for the climatic regions, land-use systems and livestock categories in the country. **Tier 3** methods include models and inventory measurement systems tailored to address national circumstances.

The **IPCC principles** that each GHG compiler should follow when conducting a national GHG inventory are: transparency, accuracy, consistency, completeness and comparability.

Figure 1: Steps to be followed when compiling a national GHG inventory.

Key category analysis is an important element of a national GHG inventory. It is the process of identifying the main categories that originate GHG emissions and removals. Key categories represent the significant portion of a country's total emissions. By identifying these key categories, Parties can prioritize their efforts and resources in order to improve their overall estimates. Such a process will lead to improved quality, as well as greater confidence in the emissions/removal estimates that are calculated.

The data used in a national GHG inventory should be in line with the principles and approaches of IPCC Guidelines, accompanied by documentation describing the conditions of its derivation and be unbiased and as accurate as possible. All the data used in the national inventory should be **robust**, **applicable** and **well documented**.

The Gain-Loss method and the Stock change method are used to calculate carbon stock changes in biomass. In the **Gain-Loss method** the biomass carbon loss is subtracted from the biomass carbon increment In the **Stock change method** the biomass carbon stock is assessed for a given forest area at two points in time. Biomass change is the difference between the biomass at time t_2 and time t_1 , divided by the number of years between the inventories.

Emissions and removals from Forestland. Equations 2.9, 2.10, 2.12, 2.13, 2.14, 2.7 in IPCC 2006 Guidelines for the estimation of annual change in carbon stock in **biomass pool.** Equation 2.26 in IPCC 2006 Guidelines for the estimation of carbon emissions due to drainage of forest **organic soils**. Equation 2.27 in IPCC 2006 Guidelines for the estimation of non-CO₂ gases from **fires**.

Emissions and removals from Cropland. Equation 2.7 in IPCC 2006 Guidelines for estimating changes in carbon in cropland biomass. Equation 2.25 and 2.26 in IPCC 2006 Guidelines for estimating changes in soil carbon stocks in mineral and organic soils respectively.

Figure 2. Group exercises during the workshop were implemented.

Emissions and removals from livestock. Equations 10.19 and 10.20 in IPCC 2006 Guidelines for estimating methane emissions from enteric fermentation. Equation 10.22 in IPCC 2006 Guidelines for estimating methane emissions from manure management. Equation 10.25, 10.26 and 10.27 in IPCC 2006 Guidelines for estimating direct and indirect N₂O emissions from manure management. Equation 10.28 for estimating the amount of manure nitrogen that leached from manure management system.

3.2 Summary of the practical part of the workshop

Exercise on Institutional arrangements: In this exercise participants got familiar with the list of national organizations that have a key role when compiling a national AFOLU GHG inventory. In addition, participants learned how to assign roles and responsibilities to various entities involved in the preparation of GHG inventory.

Exercise on Data Compilation: In this exercise, participants learned how to enter data on emission factors into the IPCC emission factor database. As an example, the following scientific articles was used: *Hossain, M. S., Mohammad Raqibul Hasan; Bose, Arun; Limon, Sharif Hasan; Chowdhury, Md Rezaul Karim; Saha, Sanjoy. (2012). Allometry, above-ground biomass and nutrient distribution in Ceriops decandra (Griffith) Ding Hou dominated forest types of the Sundarbans mangrove forest, Bangladesh. Wetlands Ecology and Management, 20(6), 539-548. doi:10.1007/s11273-012-9274-2.*

Exercise on Land Representation: The objective of this exercise was to familiarise participants with the three IPCC approaches and IPCC land categories. The participants learned how to work on land area data, harmonize the national land cover classes into the IPCC classes and develop a land -use change matrix.

Exercise on estimating emissions/removals from forestland remaining forestland: In this exercise, participants learned how to calculate the carbon stock changes in biomass pool using the gain-loss method. Firstly, participants calculated the annual increase in biomass carbon stocks due to biomass growth and the annual decrease in carbon stocks due to biomass loss. The following equations were used in this exercise:

 $\Delta C_G = A * G_{TOTAL} * CF$

Lwood-removals = H * BCEFR * (1+R) * CF

Lfuelwood = [FGtrees *BCEFR * (1+R) + FGpart * D] * CF Ldisturbances = A * BW * (1+R) * CF * fd

DCL=Lwood-removals+ Lfuelwood + Ldisturbances

Exercise on estimating emissions from deforestation (forestland converted to cropland): In this exercise participants learned how to calculate the carbon stock changes in biomass and soil pool when forest land converted to cropland. It was estimated that the annual changes in carbon stocks from

biomass was -2,667,954.44 tonnes C yr⁻¹ while the annual change in carbon stocks in mineral soils was 130675.99 tonnes C yr⁻¹.

Exercise on estimating removals from afforestation (Land converted to forestland): In this exercise participants learned how to calculate the annual increase in biomass carbon stocks due to biomass growth when cropland, wetland, settlements and other land are converted to forestland. In total the

annual increase in biomass carbon stocks was estimated to be 806,808.53 tonnes C yr⁻¹. In addition, participants calculated the changes in carbon stocks in dead wood and litter (dead organic matter

pool). The carbon stock changes from this pool was estimated to be 16854.63 tonnes C yr^{-1.} . The annual changes in carbon stocks in mineral soils was estimated to be - 28532.95 tonnes C yr⁻¹.

	Category	Land Converted to Fore	st Land: Annual increa	ase in carbon stocks	in biomass (include:	s above- and below-g	round biomass)				
	Category code	381b									
	Sheet	1 of 4									
	Equation	Equation 2.2	Equation 2.9		Equation 2.10		Equation 2.9				
Land-use category			Area of land Converted to Forest Land	Average annual above-ground biomass growth	Ratio of below- ground biomass to above-ground biomass	Average annual biomass growth above and below- ground	Carbon fraction of dry matter	Annual increase in biomass carbon stocks due to biomass growth			
			(1)	(tonnes dm	[tonnes bg dm	(tonnes dm	[tonnes C	demonstration of the			
		Subcategories for	(iia)	ha ⁻¹ yr ⁻¹)	(tonne ag dm) ⁻¹]	ha ⁻¹ yr ⁻¹)	(tonne dm) ⁻¹]	(tonnes C yr)			
Initial land use ¹	Land use during reporting year	reporting year	National statistics or international data sources	Tables	zero (0) or	G _{TOTAL} = G _W * (1+R)	0.5 or	$\Delta C_{G} = A * G_{TOTAL} * CF$			
				4.9, 4.10 and 4.12	Table 4.4		Table 4.3				
			Α	Gw	R	GTOTAL	CF	ΔC _G			
0	FL	Tropical moist forest	33108.51061	9	0.24	11.16	0.5	184745.49			
UL.		Tropical rainforest	79484.67192	7	0.37	9.59	0.5	381129.00			
	Sub-total							565874.49			
CI	EI	(a)				6					
GL	1	(b)	х — — — — — — — — — — — — — — — — — — —								
	Sub-total										
10/1	-	Tropical moist forest	13454.11287	9	0.24	11.16	0.5	75073.95			
VVL	FL	Tropical rainforest	16347.92508	7	0.37	9.59	0.5	78388.30			
	Sub-total							153462.25			
CI.		Tropical moist forest	414.2903073	9	0.24	11.16	0.5	2311.74			
3L		Tropical rainforest	1872.660542	7	0.37	9.59	0.5	8979.41			
	Sub-total							11291.15			
0		Tropical moist forest	301.6272112	9	0.24	11.16	0.5	1683.08			
UL	FL	Tropical rainforest	15536.50965	7	0.37	9.59	0.5	74497.56			
	Sub-total							76180.64			
	Total			e -		2		806808.53			

Figure 3: Annual change in carbon stocks in biomass pool when cropland, wetland, settlements, and other land converted to forestland.

Exercise on estimating emissions from biomass burning in forestland and cropland: In this exercise participants learned how to calculate emissions of CH₄, CO, N₂O, NOx from fires taking place in forestland and cropland. The data used in this exercise were collected from Global Fire Emissions Database available at <u>http://www.globalfiredata.org/</u>.

Equation Equation 2.2							Equation 2.27					
Land-use category			Area burnt Mass of fuel Combustion factor ² Emission factor for each GHG available for combustion ²		CH₄ emissions from fire	CO emissions from fire	N ₂ O emissions from fire	NO _x emissions from fire				
Initial land use		Subcategories for reporting	(ha)	(ha) (tonnes [g GHG (ha) ha ⁻¹) (-) (kg dm burnt) ⁻¹]		(tonnes CH ₄)	(tonnes CO)	(tonnes N ₂ O)	(tonnes NO _x)			
	Land use during reporting year	year ¹		Table 4.7	Table 2.6		Table 2.5	L _{fire} -CH ₄ = A * M _B * C _f * G _{ef} * 10 3	L _{fire} -CO = A * M _B * C _f * G _{ef} * 10 3	L _{fire} -N ₂ O = A * M _B * C _f * G _{ef} * 10 3	L _{fire} -NO _X = A * M _B * C _f * G _{ef} * 10 ⁻³	
			A	M _B	Cr		G _{ef}	L _{fire} -CH ₄	L _{fire} -CO	L _{fire} -N ₂ O	L _{fire} -NO _x	
5 		Tropical rain				CH₄	6.8	1370.88				
		forest				CO	104		20966.4			
		10,000				N ₂ O	0.2			40.32		
	FL	-	2000	280	0.36	NO _x	1.6				322.56	
		Tropical dry forest				CH4	6.8	1654.848				
						00	104		25309.44	40.070		
E.			5200	120	0.26	N ₂ O	0.2		e	48.072	200.276	
, FL		Tropical mountain	3200	150	0.50		6.8	146.99			369.370	
						CO	104	140.00	2246.4			
						N _e O	02	2	LE-TO.T	4.32		
		systems	1200	50	0.36	NO,	1.6				34.56	
				1001.0		CH4	6.8	489.6				
		Tropical moist				CO	104		7488	i i		
		forest				N ₂ O	0.2			14.4		
			800	180	0.5	NO _x	1.6				115.2	
						CH₄		3662.208				
	Total					CO			56010.24			
						N ₂ O			l l	107.712		
						NOx					861.696	
¹ For each subcategory, u	For each subcategory, use separate line for each non-CO ₂ greenhouse gas.											

³ Where data for Mg and C₁ are not available, a default value for the amount of fuel actually burnt (Mg * C₂) can be used (Table 2.4). In this case, Mg takes the value taken from the table, whereas C₁ must be 1.

Figure 4: Emissions derive from vegetation fires from forestland remaining forestland.

Exercise on estimating emissions from enteric fermentation and manure management: In this exercise, participants learned how to calculate CH₄ emissions from manure management from livestock. It was estimated that the annual methane emissions from manure management was in total

78.38 Gg CH₄ yr⁻¹ . In addition, participants learned to calculate the direct and indirect N₂O emissions from manure management

Sector	Agriculture, Forestry and Other Land Use								
Category	Methane Emissions from Enteric Fermentation and Manure Management								
Category code	3A1 and 3A2 1 of 1								
Sheet									
Equation	Equatio	n 10.19	Eq. 10.19 and 10.20	on 10.22					
Spacies// ivestock	Number of animals	Emission factor for Enteric Fermentation	CH₄ emissions from Enteric Fermentation	Emission factor for Manure Management	CH₄ emissions from Manure Management				
category	(head)	(kg head ⁻¹ yr ⁻¹)	(Gg CH ₄ yr ⁻¹)	(kg head ⁻¹ yr ⁻¹)	(Gg CH ₄ yr ⁻¹)				
		Tables 10.10 and 10.11	CH _{4 Enteric} = N _(T) * EF _(T) * 10 ⁻⁶	Tables 10.14 - 10.16	$CH_{4 \text{ Manure}} = N_{(T)}^{*}$ $EF_{(T)}^{*} 10^{-6}$				
Т	N (T)	EF _(T)	CH _{4 Enteric}	EF _(T)	CH _{4 Manure}				
Dairy Cows	3598200	58	208.70	5	17.99				
Other Cattle	20389800	27	550.52	2	40.78				
Buffalo	1457000	55	80.14	5	7.29				
Sheep	3206000	5	16.03	0.2	0.64				
Goats	25439000	5	127.20	0.22	5.60				
Poultry	304172000			0.02	6.08				
Total			982.58		78.38				

Figure 5: CH₄ emissions from manure management.

Exercise on key category analysis: In this exercise participants learned how to perform a key category analysis and identify which categories have the greatest emissions.

IPCC category	value	Unit	conversion factor	Gg C02 equivalent/year	Absolute value Gg C02 equivalent/year	Comulative sum	%
CH ₄ emissions from Enteric Fermentation	982.58	(Gg CH ₄ yr ⁻¹)	34	33407.7268	33408	33408	59.5%
FL>CL (biomass)	-2667954.44	tC/yr	3.7	-9782.499618	9782	43190	76.9%
FL >FL	1766470.88	tC/yr	3.7	6477.059876	6477	49667	88.4%
L>FL (biomass)	806808.53	tC/yr	3.7	2958.297952	2958	52625	93.7%
CH ₄ emissions from Manure Management	78.38	(Gg CH ₄ yr ⁻¹)	34	2664.81188	2665	55290	98.5%
FL>CL (soil)	130675.99	tC/yr	3.7	479.145294	479	55769	99.3%
Annual direct N2O emissions from Manure Management	461108.78	kg N₂O yr⁻¹	298	137.4104163	137	55906	99.6%
L>FL (soils)	-28532.95	tC/yr	3.7	-104.6208069	105	56011	99.7%
Indirect N ₂ O emissions due to volatilization from Manure Management	277337.11	kg N₂O yr⁻¹	298	82.64645736	83	56094	99.9%
L>FL (DOM)	16854.63	tC/yr	3.7	61.80031865	62	56156	100.0%
Total Sum					56156		

Table 1: Amount of $GgCO_2$ -eq yr⁻¹ emitted from each IPCC category.

4. **RECOMMENDATIONS FOR NEXT STEPS**

- The professors will discuss the possibility of integrating a course on GHG inventory for the AFOLU sector in the University curricula.
- It will be investigated the possibility of funding graduate students from each of the four universities involved in the training to carry out project on GHG data collection or data generation for the LULUCF sector.
- Fill the gap on data collection. Put in place data collection for the following activities:
 - Wood removals
 - Biomass Growth rate
 - Management practices
 - o Data on forest disturbances
 - o Biomass burning

5. **REFERENCE**

- FAO. (2012). Global ecological zones for FAO forest reporting: 2010 Update, Forest Resources Assessment Working Paper 179. Retrieved from Rome: <u>http://www.fao.org/docrep/017/ap861e/ap861e00.pdf</u>
- FAO/IIASA/ISRIC/ISS-CAS/JRC. (2009). *Harmonized World Soil Database (version 1.1)*. Retrieved from FAO, Rome, Italy and IIASA, Laxenburg, Austria:
- Akhter, M. (2015). Greenhouse Gas Inventory training for Land Use, Land-Use Change and Forestry, 7 12 June 2015. Bangladesh Forest Department and Food and Agricultural Organisation of the United Nations, Dhaka, Bangladesh. Retrieved from
- Akhter, M., & Shaheduzzaman. (2012). *Proceedings of the training workshop on Greenhouse Gas Inventory Preparation for Forestry in Bangladesh*. Retrieved from Dhaka:
- Islam, K. M. N., Poultouchidou, A., Akhter, M., & Henry, M. (2016). *Proceedings of the National Training Workshop on data sharing, institutional arrangements and tools for GHG gases for the Agriculture, Forestry and Other Land use sector*. Retrieved from
- Poultouchidou, A., Birigazzi, L., & Akhter, M. (2016a). *Proceeding for the 2nd training on Greenhouse Gas Inventory for land use, land-use change and forestry (LULUCF)*. Retrieved from Dhaka:
- Poultouchidou, A., Birigazzi, L., & Akhter, M. (2016b). *Proceeding for the training on Greenhouse Gas Inventory for land use, land-use change and forestry (LULUCF)*. Retrieved from Dhaka:

APPENDIX 1. AGENDA

Venue	Bangladesh Bureau of Statistics	
Sunday 23 Apri	l 2017	
09.15 - 09.45	Why it is important to monitor GHGs from the AFOLU sector?	Nazmul Islam
	- GHG emission sources and trends.	UN-REDD
	- Global trends of AFOLU GHG emissions.	FAO
	-Importance of AFOLU sector.	
	-GHG emission reported from AFOLU sector in Bangladesh.	
	- The role of UNFCCC.	
	- Reporting requirements in the context of UNFCCC.	
09.45 - 10.15	Quiz	Nazmul
10.15 – 10.30	Tea Break	
10.30 - 11.00	- Steps for preparing a national GHG-I for the AFOLU sector	Anatoli Poultouchidou
	- Main elements that should be included in a national GHG-I	UN-REDD
	 Methodological requirements that should be followed when 	FAO
	compiling a GHG-I: IPCC Guidelines; Generic methodological	
	approach; Tier methods; TACCC principles	
11.00 - 11.30	Quiz	Anatoli
11.30 – 12.00	Institutional arrangements for a national GHG-I	Nazmul Islam
		UN-REDD
		FAO
12.00 - 13.00	Group Exercise	Nazmul & Anatoli
13.00 - 14.00	Lunch	
14.00- 14.30	Data compilation	Anatoli Poultouchidou
		UN-REDD
		FAO
14.30- 15.00	Quiz	Anatoli
15.00 – 15.15	Tea Break	
15.15 – 15.45	- Land representation	Luca Birigazzi
	- IPCC land categories	UN-REDD
	- Uncertainties	FAO
	- Land use database	
	- Land stratification	
15.45 – 16.45	Exercise	Luca
16.45 – 17.00	Wrap up of the day	
Monday 24 Ap	ril 2017	
09.00- 9.30	Estimating C stock changes in FL remaining FL	Luca Birigazzi
	[degradation and C enhancement]	UN-REDD
		FAO
9.30-10.30	Group exercise	Luca
10.30 - 10.45	Tea break	
10.45 - 11.15	Estimating C stock changes in FL converted to other land	Anatoli Poultouchidou
	[deforestation]	UN-REDD

		FAO
11.15 – 12.15	Exercise	Anatoli
12.15 – 12.45	Estimating C stock changes in other land converted to FL	Luca Birigazzi
	[enhancement]	UN-REDD
		FAO
12.45 – 13.45	Lunch	
13.45 – 14.45	Exercise	Luca
14.45 – 15.15	Estimating emissions from forest vegetation fires	Nazmul Islam
		UN-REDD
		FAO
15.15 – 16.15	Exercise	
16.15 – 16.30	Tea break	
16.30 - 16.45	Wrap up of the day	
Tuesday 25 Ap	ril 2017	
09.00 - 09.30	Estimating C stock changes in CL remaining CL	Luca Birigazzi
	[equation for living biomass pool]	UN-REDD
		FAO
09.30 - 10.30	Exercise	Luca
10.30 - 10.45	Tea break	
10.45 – 11.15	Estimating C stock changes in CL remaining CL in soils	Anatoli Poultouchidou
	[equation for mineral and organic soils]	UN-REDD
		FAO
11.15 – 12.15	Exercise	
12.15 – 12.45	Emissions and removals for land converted to CL	Luca Birigazzi
		UN-REDD
		FAO
12.45 – 13.45	Lunch	
13.45 – 14.45	Exercise	
14.45 – 15.15	Estimating carbon stock change in settlements	Luca Birigazzi
		UN-REDD
		FAO
15.15 – 16.15	Exercise:	Luca
	Estimating carbon stock change in settlements	
16.15 – 16.30	Tea break	
16.30 – 16.45	Wrap up of the day	
Wednesday 26	April 2017	
09.00 - 09.30	Estimating carbon stock changes in Wetlands:	Nazmul Islam
	- Land Converted to Wetlands: CO2 Emissions from Land	UN-REDD
	Converted to Flooded land	FAO
09.30 - 10.30	Exercise	
10.30 - 10.45	Tea break	
10.45 – 11.15	Livestock related emissions	Nazmul Islam
		UN-REDD
		FAO
11.15 – 12.15	Exercise	
12.15 – 12.45	Soil related: Rice cultivation, Liming, Urea fertilization	Anatoli Poultouchidou

		UN-REDD							
		FAO							
12.45 – 13.45	Lunch								
13.45 – 14.15	Exercise	Anatoli							
14.15 – 14.45	Key category analysis	Luca Birigazzi							
		UN-REDD							
		FAO							
14.45 – 15.45	Exercise	Luca							
15.45 – 16.15	Quality control	Luca Birigazzi							
		UN-REDD							
		FAO							
16.15 – 17.15	Exercise	Luca							
Thursday 27 Ap	Thursday 27 April 2017								
09.00 - 16.00	Exercise								
	Full compilation of GHG for the AFOLU sector	Luca/Anatoli/Nazmul							
	For two time periods Approach 2								
16.00 - 16.30	Uncertainty analysis	Luca Birigazzi							
		UN-REDD							
		FAO							

APPENDIX 2. PARTICIPANT LIST

ID	Name	Ge	Designation	Organization	Email
		nd	-	_	
		er			
1	Dr. M. Al-Amin	Μ	Professor	IFESCU	prof.alamin@yahoo.com
2	Dr. Md. Danesh Miah	М	Professor and Head	IFESCU	<u>danesh@cu.ac.bd</u>
3	Dr. Md. Nazmus Sadath	Μ	Professor	KU	mnsadath@yahoo.com
4	Md. Saidur Rahman	Μ	Assistant Professor	KU	ranju_fwt@yahoo.com
5	Dr Mohammad Belal Uddin	Μ	Professor	SUST	belal405@yahoo.com
6	Mr. Rakibul Hasan Mukul	М	CF, PD-UN-REDD	FD	lalpiprey@gmail.com
7	Mr. Md. Zaglul Hussain	Μ	CF	FD	zaglulfd@gmail.com
8	Ms. Marufa Akther	F	ACCF	FD	marufaakther@yahoo.com
9	Ms. Sharmin Akther	F	ACF	FD	sharminbfd@gmail.com
10	Mr. Md. Bablu Zzaman	Μ	Forester	FD	zzaman1978@gmail.com
11	Dr. Hasan M Abdullah	Μ	Assistant Professor	BSMRAU	hasan.abdullah@bsmrau.edu.bd
12	Md. Mahmud Hossain	М	Research Officer	DoE	mamoon.ju@gmail.com
13	Rakibul Hassan Mukul	М	PD-UN-REDD	CF, UN-REDD	lalpiprey@gmail.com

APPENDIX 3. EVALUATION