

Forest Carbon Inventory 2014: Eight Protected Areas in Bangladesh

Main Report

Bangladesh Forest Department and Winrock International

February 2015

Climate-Resilient Ecosystems and Livelihoods (CREL) AID-388-A-12-00007

Contents 1

Acronyms	5
EXCUTIVE SUMMARY	7
Acknowledgements	8
1. Introduction and Background	9
2. Carbon pools for measurements:	10
3. Forest and Forest Carbon Inventories in Bangladesh	10
3.1 Important Forest Inventories	10
3.2 Forest Carbon inventory in the Sundarbans Reserved Forest (SRF) (2009):	10
3.3 Forest carbon inventory at six protected areas 2010.	11
3.4 Forest carbon inventory 2014 at eight protected areas.	11
3.4.1 Khadimnagar National Park (KhNP):	12
3.4.2 Lawachara National Park (LNP):	13
3.4.3Satchari National Park (SNP)	14
3.4.4. Rema-Kalenga Wildlife Sanctuary (RKWS)	15
3.4.5 Modhupur National Park (MNP)	16
3.4.6 Kaptai National Park (KNP)	17
3.4.7 Chunati Wildlife Sanctuary (CWS)	18
3.4.8 Himchari National Park (HNP:	19
4. Objectives of the Forest Carbon Inventory	20
5. Definitions and Sampling Design	20
5.1 Definitions	20
5.2 Sampling design and sample size	22
6. Field Inventory	24
6.1 Data and Sample Management	
6.2 Personnel and Training	
6.3 Establishment of the sample plots	24
6.4 Parameters recorded/ measured:	
6.5 Measurements of Seedlings, Saplings, Trees and Palms	28
6.6 Measurements of Stumps from Human Degradation	28
6.7 Measurement of Dead Wood	30
6.7.1 Measurement of Standing Dead Wood (not cut by humans)	30
6.7.2 Measurement of Lying Dead Wood:	30
6.8 Measurement of non-tree vegetation	31
6.8.1 Measurement of bamboos and canes	31
6.8.2 Measurement of other non-tree vegetation:	32
6.9 Measurement of Litter:	32
6.10Destructive Samples of Seedlings, Saplings, Palms, Bamboos, Shrubs and others	32
6.10.1 Measuring the Weight of an Average Sapling & Seedling	32

6.10.2 Destructive Sampling of non-tree vegetation	33
6.11 Canopy cover	33
6.12 Soil % Organic Carbon and Bulk density	33
6.12.1 Soil % Organic Carbon	
6.12.2 Soil Bulk Density	
6.13 Laboratory Processing of Soils and plant samples	34
7. Data compilation:	
7.1 Live Trees:	35
7.2 Compilation of Stumps:	35
7.3 Standing dead wood:	
7.4 Lying dead wood:	
7.5 Non-tree Vegetation:	
7.6 Saplings & Seedlings:	
7.7 Litters/Herbaceous:	
8. Results:	
Emission Factors from Deforestation	43
Forest Degradation	47
GHG Emissions and Biophysical Condition	50
Discussions	53
References	
Appendix I: Field Forms	
Form 1 CREL Forest Carbon Inventory 2014: Plot Setup and Description	
Form 2 CREL Forest Carbon Inventory 2014: Measurement of Seedlings, Saplings, Trees and Pa	alms 59
Form 3: CREL Forest Carbon Inventory 2014: Measurement of Stumps and Canopy Cover	60
Form 3A: CREL Carbon Inventory: Stumps from human degradation	60
Form 3B Canopy cover	60
Form 4: CREL Forest Carbon Inventory 2014: Standing Dead & Lying Wood Measurements Samples:	
Form 4A: Standing Dead Wood Measurements	61
Form 4B: Lying Dead Wood Measurements	61
Form 4C: Soil	61
Form 5: CREL Forest Carbon Inventory 2014: Non-Tree Woody Vegetation: Bamboos	62
Form 6: CREL Forest Carbon Inventory 2014: destructive harvest samples & sub-samples	63
Appendix-II: List of volume equation and wood density	64
Appendix –V: List of Species and tree counts at each PA	71
Figure 1: Map showing the CREL sites including Forest Carbon Inventory 2014 PAs	
Figure 2: Map of Khadimnagar National Park Figure 3: Map of Lawachara National Park	
Figure 3: Map of Lawachara National Park	
Figure 5: Map of Rema-Kalenga Wildlife Sanctuary National Park	

 Figure 6:Map of Modhupur National Park
 16

 Figure 7: Map of Kaptai National Park
 17

 Figure 8: Map of Chunati Wildlife Sanctuary National Park
 18

Figure 9 Example of how to mark the 3 trees around plot center so that they can be used to triangulate plot center in	
the future if the stake cannot be found	
Figure 10: CCF visits to Forest Carbon Inventory	

Data archives: Lists of spreadsheets submitted along with the report.

Khadimnagar National Park (KhNP), Lawachara National Park (LNP), Satchari National Park (SNP), Rema-Kalenga Wildlife Sanctuary (RKWS), Modhupur National Park (MNP), Kaptai National Park (KNP), Chunati Wildlife Sanctuary (CWS) and Himchari National park (HNP). Archive:

C:\Users\Ruhul\Dropbox\CREL_Bangladesh\CREL_Forest_Inventory2014\Latif Carbon Inventory Files\C Inventory 2014 Results.

Acronyms

ACCF	Assistant Chief Conservator of Forests
ACF	Assistant Conservator of Forests
ACL	Assistant Crew Leader
Ag	Permanent Agriculture
BD	Soil Bulk Density
BFRI	Bangladesh Forest Research Institute
С	Carbon
CCF	Chief Conservator of Forests
CF	Conservator of Forests
CFCI	Consultant Forest Carbon Inventory
CL	Crew Leader
Cm/cm	Centimeter
CMC	Co-management Committee
CMC	Co-management Committee
COP	Chief of Party
CREL	Climate Resilient Ecosystems and Livelihoods
Cum/cum	Cubic meter
CV	Coefficient of variation
CWS	Chunati Wildlife Sanctuary
DAB	Diameter above buttress (0.3 m above upper end of buttress
DBH, dbh, D	Diameter at Breast Height
DCCF	Deputy Chief Conservator of Forests
DCF/DFO	Deputy Conservator of Forests/Divisional Forest Officer
DCOP	Deputy Chief of Party
DF	Degraded forest
F	Forest
FAO	Food and Agriculture Organization (United Nations)
FCI	Forest Carbon Inventory
FD	Forest Department
FRMP	Forest Resources Management Project
G/g	Gram
GBH	Girth at Breast height
GBH, gbh, G	Girth at breast height
GOB	Government of Bangladesh
GPS	Global Positioning System
Ha, ha	Hectare
HNP	Himchari National Park
IPAC	Integrated Protected Area Co-management Project
IUCN	International Union for Conservation of Nature
KHNP	Khadimnagar National Park
KNP	Kaptai National Park
LNP	Lawachara National Park
LRS	Long Rotation Species.
LUS	Land use class
M/m	
11/111	Meter

Modhupur National Park
-
Measurement, Reporting and Verification
National Forest Inventory
Natural Resources Management
Organic Carbon
Oven Dried
Overseas Development Agency
Protected Area
Plantation
Permanent Sample Plots
Reducing Emission from forest Deforestation and forest Degradation
Rema-Kalenga Wildlife Sanctuary
Readiness Preparation Proposal
Shifting agriculture
Stump Girth
Satchari National Park
Standard Operating Procedures
Sundarban Reserve Forest
Short Rotation Species.
Ton
Taka
Team Leader
Terms of Reference
Temporary Sample Plots
United Nations
United Nations Development Program
United Nations Reducing Emission from Degradation & Deforestation
United States Agency for International Development
United States Department of Agriculture
United States Forest Service
Village forest
Winrock International

EXCUTIVE SUMMARY

Climate-Resilient Ecosystems and Livelihoods (CREL), a project of Bangladesh Forest Department with financial support from USAID and technical supports from Winrock International took an initiative to estimate the Forest Carbon Inventory (2014) in eight protected areas of Bangladesh. These are Khadimnagar National Park (KhNP), Lawachara National Park (LNP), Satchari National Park (SNP), Rema-Kalenga Wildlife Sanctuary (RKWS), Modhupur National Park (MNP), Kaptai National Park (KNP), Chunati Wildlife Sanctuary (CWS) and Himchari National park (HNP). Following IPCC guidelines and lessons from previous forest inventories in the country as well as different SOPs of FD and Winrock International, concentric circular plot were systematically laid out at 30"X30" interval. Data were recorded at 2.0m, 4m, 10m and 17.84m radii plots. Data collected from a total of 375 sample plots in eight PAs (covering 33,876 ha) were analyzed using MS Excel. The CO2 (Mg/ha) estimates were made for five carbon pools, e.g. Trees (seedlings, saplings and live trees), dead wood (sanding and lying deadwoods), non-tree vegetation (herbs, shrubs, cane, bamboo, liana etc), litters, and soil. Land use classification for each protected area landscapes were taken from image analysis (Rapideye 2013-14, 5m spatial resolution).

The total carbon CO2 (Mg/ha) stock were found 150.08, 53.23, 277.89, 258.46,321. 46, 393.37, 373.88 and 231.79 Mg/ha at CWS, HNP, KhNP, KNP, LNP, MNP, RKWS and SNP respectively. Similarly the total carbon stocks for the respective PAs were estimated as 1,248,657.06, 80713.02, 188014.82, 1315527.79, 955,283.45, 3,249,969.51, 2,030,311.48 and 373,265.06 Mg.

Acknowledgements

We are very much grateful to Mr. Darrell Deppert, Chief of Party and Mr. Ruhul Mohaiman Chowdhury, M&E of CREL for choosing and giving me the chance to work on Forest Carbon Inventory. Appreciation goes to Mr. Michael Netzer, WI, USA for his constant feedback and association during the field work, data analyses and report writing. I am thankful to the field data collection teams and FD officials for their sincere efforts to do the field works. I am also thankful to Mr. Sunbeam Rahman and his team members for GIS assistance and provide different mapping and area estimates for the inventory work.

At the last but not the least I am very much thankful to Mr. Nowroz Mollah of CREL for his assistance in table preparation. I am also thankful to the CREL personnel for making my time in Dhaka very much happy and enjoyable.

The authors

1. Introduction and Background

Bangladesh Forest Department (BFD) has been progressing with the implementation of Reducing Emissions from Deforestation and forest Degradation) REDD+ activities with assistance from Food and Agricultural Organization of United Nations(FAO) and United Nations Development Program (UNDP).Some of the first steps have been development "REDD+ Readiness Roadmap" in December 2012 under the UN-REDD framework, and subsequently in December 2013, developed REDD+ Readiness Preparation Proposal (R-PP) which has a mandate to design and establish National Forest Inventory (NFI). Along with United Nations (UN) agencies, United States Agency for International Development (USAID) has come forward to facilitate implementation of components of the R-PP through a number of programs and through USAID's Climate Resilient Ecosystems and Livelihoods (CREL) project. The CREL project envisages strengthening collaborative management of forest Protected Areas (PAs) with active involvement of Forest Department and local stakeholders as a follow-up of previous USAID finance Nishorgo Support Project (2003-2008) and Integrated Protected Area Co-management project (IPAC, 2008-2013).

The project took an initiative for conducting forest carbon inventories in a number of Protected Areas (PAs) across Bangladesh. It is anticipated that theStandard Operating Procedure (SOP) for PA level (i.e. sub-national) inventory designs could be taken into account while developing the National Forest Inventory (NFI) under Readiness Preparation Proposal (R-PP2013) implementation in Bangladesh. As part of this activity the CREL project will build capacity of local Forest Department personnel in forest carbon inventory as well as facilitating development of Measurement, Reporting and Verification (MRV) system in Bangladesh.

This document provides the results of Forest Carbon Inventory in eight PAs (CREL working sites) following the proposed Standard Operating Procedures (SOP) of Forest Carbon Inventory.One of the primary objectives of writing the SOP was in line with the future NFIfor Bangladesh under UNREDD framework. While developing the proposed SOP, extensive consultation with concerned experts from FD, FAO, WI and CREL team was done; as well as review of earlier forest inventory designs with Bangladesh Forest Department including, Overseas Development Agency, Forest Resources Management Project National Forest and Tree Resources Assessment, Protocols for Measuring & Reporting Carbon Stocks in Mangrove Forests by USDA Forest Service (October 2009), Protocol for Forest Carbon Assessment by USAID's IPAC Project (April 2010), and SOP for Terrestrial Carbon Measurement by Winrock International's Ecosystem Service Unit (2012)were conducted. In particular, the proposed SOP was applied primarily in eight CREL project sites: HimchariNational Park (HNP), ChunatiWildlife Sanctuary (CWS), KaptaiNP (KNP), Modhupur NP (MNP), Rema-Kalenga WS RKWS), Satchari NP (SNP), Lawachara NP (LNP)and Khadimnagar NP (KhNP). Field data collection for this inventory was carried out during Mar-May 2014.

2. Carbon pools for measurements:

There are five carbon pools in a forest. These are1) aboveground and belowground biomass of live trees including seedlings and saplings, 2) non-tree vegetation, 3) Standing and lying dead wood, 4) forest floor (litter), and 5) soil.

Aboveground and belowground biomass: This includes seedlings (all live trees less than breast height (1.3 m); saplings (all live trees reaching breast height (1.3 m), but having a diameter at breast height (dbh)<5.0cm; and all live trees (all live woody stems having a dbh \geq 5.0 cm). DBH is the stem diameter at 1.3 m above the ground level.

Non-tree vegetation: This includes shrubs, palms, canes, bamboos, lianas, herbaceous vegetation and grasses etc. which consists a large biomass component in the forests.

Dead woods (standing and lying): Standing dead woods are dead trees but standing and usually measures as live trees (greater than 5.0 cm DBH and taller than 1.3 m) as well as stumps (when a current height is less than 1.3 m). Lying dead woods refer all woody material on the ground with a diameter ≥ 10 cm. Lying dead wood is measured using the line-intersect method. The smaller diameter pieces of lying dead woods (diameter <10.0 cm) are considered as litter.

Litters: All dead organic surface material (including dead leaves, twigs, dead grasses, and small branches) on top of the mineral soil are considered as litter. Dead woods, on forest floor, with a diameter of less than 10 cm are also considered as litter.

Soil Carbon: Soil Carbon pool has three parameters namely i. soil depth, ii. soil bulk density (BD; mass per volume), and iii. organic carbon (%OC).

3. Forest and Forest Carbon Inventories in Bangladesh

3.1 Important Forest Inventories

Bangladesh has a long history of scientific forest management. The first Forest Management Plan for Sundarbans was written by Curtis (1924) with proper data collection and analyses. The first detailed forest inventory of Sundarbans (Forestal 1960) and Chittagong Hill Tracts (Forestal 1964) was carried out during 1959 to 1963. The inventory of the village forests was carried out by Hammermaster (1981) and others. The Forest Inventory of the Sundarbans Reserved Forest (SRF) was carried out during eighties by Chaffy *et al* (1985) and Revilla and his group during1994-1996 (Anon. 1996). A total of 1200 sample plots were laid out during 1994-96 for collection of inventory data. The Global forest resources assessment 2005 (FAO 2006) was carried out in 2005-2007 covering all over the Bangladesh.

3.2 Forest Carbon inventory in the Sundarbans Reserved Forest (SRF) (2009):

The SRF carbon assessment considered 150 out of these 1200 clustered plots composed of five circular subplots of the SRF inventory of 1994-96. BFD and USFS expatriates adopted this sampling design. These 150 plots were subset of 1200 temporary sample plots systematically laid

at one minute intervals. The circular subplots in a plot were laid as a center subplot with four more subplots oriented in cardinal directions (east, west, south, and north), 50m from the center. Each subplot had different sized concentric nested circles e.g. 2 m radius for seedlings and saplings, 4m radius for non-tree vegetation, 10m for trees. In addition 30"X30" square plots for litters, 10m transacts from center for woody debris also laid in each plot. For soil samples 0-30cm and 30-100 cm depth were taken from each plot using one meter long open Faced peat auger. Two 5cm-long samples (for bulk density and %OC) were taken from each of the mid-point of 0-30cm and 30-100 cm depths.

3.3 Forest carbon inventory at six protected areas 2010.

Almost similar to SRF inventory (2009) was adopted, by Forest Department and IPAC team, in six hill forest PAs at south-eastern part of the country; these includes, Teknaf wildlife sanctuary (TWS), Inani Reserved Forests (IFR), Medakachapia National Park (MNP), Fasiakhali Wildlife Sanctuary (FKWS), Dudpukuria-Dhopachari Wildlife Sanctuary (DDWS), and in Sitakunda ecopark. Since these PAs are different in size and fragmented land uses, a varied number of samples designs were laid out with: TWS (area - 11,615 ha, 54 plots at 45 second interval), IRF (7,700 ha, 56 plots at 40" interval), MKNP (396 ha, 41 plots 12" interval), FKWS (1302 ha, 72 plots at 15" interval), DDWS (4717 ha, 62 plots at 30" interval) and Sitakunda Eco-Park (800 ha, 35 plots at 50" interval).

3.4 Forest carbon inventory 2014 at eight protected areas.

The forest carbon inventory 2014 under USAID's CREL project was carried out at eight CREL sites/PAs (Figure 1).

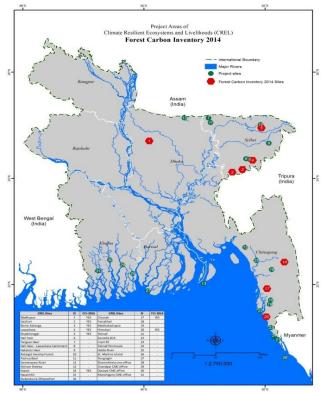


Figure 1: Map showing the CREL sites including Forest Carbon Inventory 2014 PAs

Brief descriptions of the project sites are given as follows:

3.4.1 Khadimnagar National Park (KhNP):

The Khadimnagar National Park (KhNP) is situated about 15 km north-east of Sylhet city. The National Park was established in 2006 to preserve the remaining natural hill forests of Khadimnagar under Bangladesh Wildlife Act 1974 with an area of 678.8 ha. Plantations were established in the Khadimnagar Reserved Forest since 1961. The original forests were of local forest bamboo species and subsequently converted into tree plantations with different indigenous tree species. The area is composed of undulating hillocks locally called tilla. The area has also small sandy-bedded streams which generally dry up during dry seasons. The forest has a total of 217 plant species, 20 amphibians, 9 reptiles, 26 animals & 28 species of birds. There is an ethnic Patra community with a population of 12,500 individuals with varying degrees of dependency on forest products.

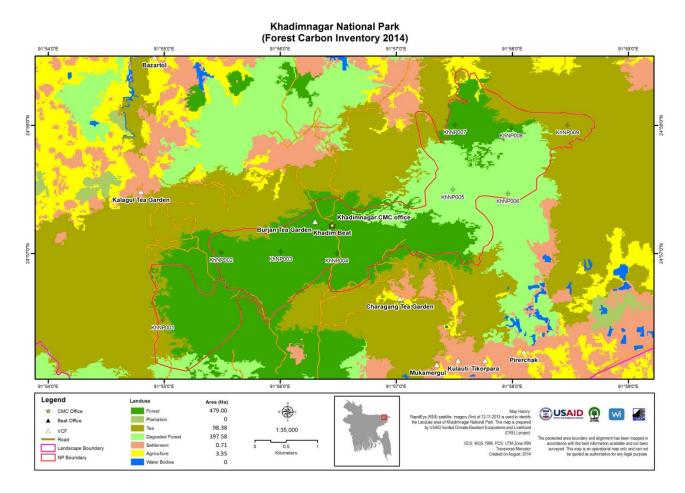


Figure 2: Map of Khadimnagar National Park.

3.4.2 Lawachara National Park (LNP):

Lawachara National Park (LNP) is part of the West Bhanugach Reserved Forest and is situated at Kamalgonj Upazila in Moulavibazar District in the North-eastern part of Bangladesh. LNP was first established in 1996 and later expanded to its current area of 1250 hectares. LNP is located about 7 kilometers east of Sreemangal, Moulavibazar in Sylhet Division and is a popular tourist place. LNP is mixed with understory comprising of evergreen and an upper-canopy composed of tall deciduous trees. LNP has approximately 167 plant species, more than 15 species of amphibians, more than 40 species of reptiles, 246 species of birds and 20 species of mammals. The LNP landscape includes about 30 villages comprising 7348 households. Among these, 18 villages are directly adjacent to the park while two villages are located within its boundary.

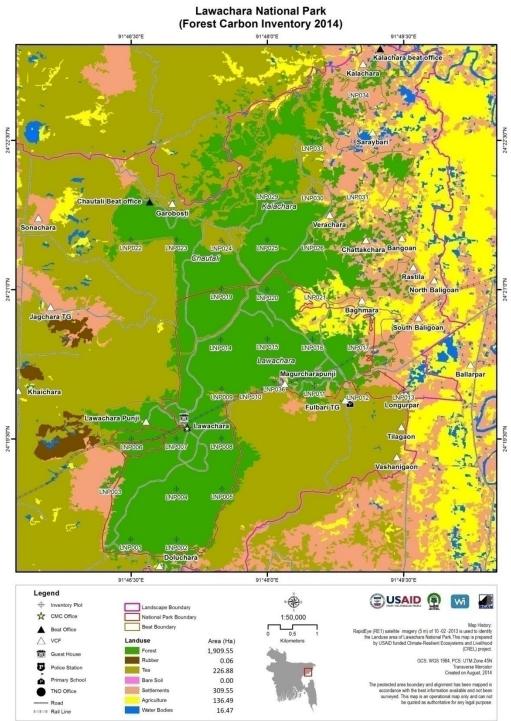


Figure 3: Map of Lawachara National Park

3.4.3Satchari National Park (SNP)

Satchari National Park (SNP) is situated in the Paikpara Union of Chunarughat Upazila in HabigonjDistrict.SNP stands on the Dhaka-Sylhet old highway and is about 130-140 km northeast of Dhaka, in the Sylhet Division.SNP is governed by the Forest, Act of 1927 as well as the Wildlife Conservation Act of 1974.The tropical evergreen/semi-evergreen vista, established in 2006, comprises an area of 243 hectares as a part of the 6205 ha of the Raghunandhan Hills Reserved Forest. Hillocks, locally called Tillas, are scattered throughout the landscape, ranging from 10-50 meters. A number of small, sandy bedded streams flow throughout the forests, all of which dry out following the end of rainy season in October-November, and are subject to intensive commercial harvesting of sands during the dry season.

SNP originally supported an indigenous vegetation of mixed tropical evergreen forest. However, almost all of the original forest has been removed or substantially altered, turned it into a secondary forest. About 200 ha of the reserved forest are in natural condition and the remnants were introduced to long and short term social plantations schemes. Bamboo and Cane have been planted in many plantation areas after removing undergrowth vegetation.SNP supports more than 6 species of amphibians, 18 species of reptiles, 149 species of birds and 24 species of mammals.

SNP is surrounded by 10,315 households with a population of about 55,701 (including one Tipra community, an ethnic settlement within the core zone) and 8 tea gardens. The lone Tipra village located within SNP comprises 20 Households. The adjacent areas are covered by tea estates, coffee patches, rubber plantations and rice fields. Other settlements are located approximately 3-8 kms adjacent to the park area. All households inside Tipra settlements are mostly dependent on the forest for their everyday needs of fuel wood, house building materials and vegetables. Many households, mainly the more financially challenged ones, are entirely or partially dependent on the collection on fuel wood, timber and bamboo.

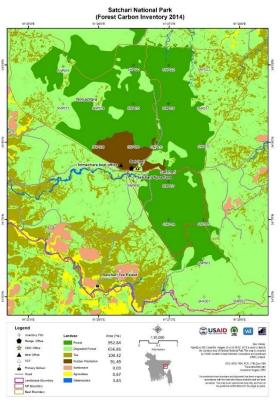


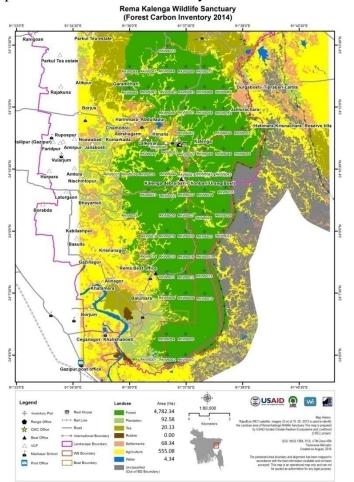
Figure 4: Map of Satchari National Park

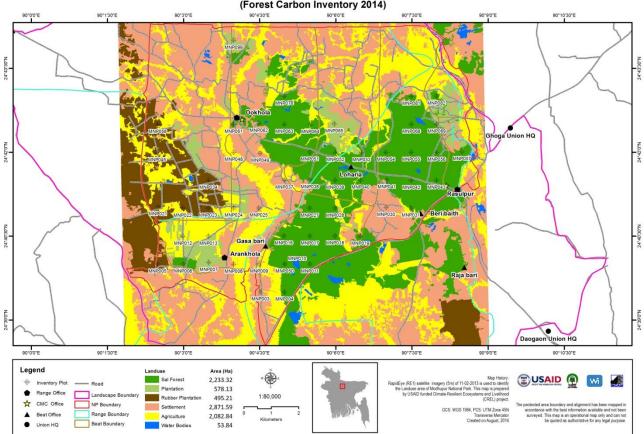
3.4.4. Rema-Kalenga Wildlife Sanctuary (RKWS)

Rema-Kalenga Wildlife Sanctuary (RKWS) in Chunarughat and Madhabpur Upazila of Habigonj District is located nearly 130 km northeast of Dhaka. RKWS shares its eastern and southern borders with the Indian state of Tripura. RKWS is governed under the Forest Act of 1927 as well as the Wildlife Conservation Act of 1974. The forest is semi/mixed-evergreen with 1795 ha area, is a part of 6232 ha Tarap Hill Reserve Forest. However, the forest itself has dwindled with paddy cultivated in some areas in between the valleys, particularly in the northern part of the sanctuary. Nearly 400 ha of Tea Estate lands border the Sanctuary on the south-west and approximately 50 ha of Government land (Khans) border the Sanctuary on north-east and are included in the interface landscape zones which complete a 1 km wide buffer strip along the entire Sanctuary boundary.

The forest is semi-evergreen. About 76% of the forest is s till natural condition. Plantations only cover 9% of the forest. It is home to a magnificent assortment of plants, animals and birds and biodiversity of the PA consist of 167 birds, 7 amphibians, 18 reptiles, and 37 species of mammals.

Four different ethnic communities (*Tripura, Shantal, Telegu, and Urang*) live in and around the forest. A village inhabited by the Tipra tribe is located within the Sanctuary. However, there are other villages on the boundary between the reserved forest and the wildlife sanctuary. Around 9,330households have been identified nearby RKWS with an estimated population of 23,000.Adjacent land use includes long-rotational reserved forest, tea estate, converted agricultural lands and Khans land. Human pressure on the sanctuary is in fact buffered by the adjacent reserved part of the forest. However, fuel wood and building materials collected by the adjacent households pose a threat to the biodiversity.




Figure 5: Map of Rema-Kalenga Wildlife Sanctuary National Park

3.4.5 Modhupur National Park (MNP)

Modhupur National Park (MNP) is situated on Dhaka-Mymenshing Road, 125 km Northeast of Dhaka. MNP was established in 1982 following the Wildlife Act of 1974 and was declared a National Park (NP) in 1982. It covers an area of 8436 ha. The Bongshai River that flows through MNP on the southern side of the forest is a part of the old Brahmaputra channel. The area also includes connecting canals, streams, and rivers and is intensively fished with a variety of fishing gear.

The Garo, Koch and Barman communities live in the surrounding area of MNP, comprising a total of 187 villages, with varied degrees of dependency upon the forest. Where communities like the Koch in particular worship nature, the Garo have a deep set belief in the healing powers of local herbs. Fostering this age old tradition of dependency upon the forest has helped these communities develop an inherent understanding of the need for sustainable use of MNP and its resources. Their growing levels of awareness form the backbone of conservation activities.

The Park is deciduous with a slight mixture of evergreen forest, interspersed with hillocks. Topographically the landscape comprises mainly on plain lands and forest patches, which was once a largely dense forest area. Now the land masses surrounding the site and a few patches within the forest are also intensively cropped.4 Rubber plantations also surround the site, collectively containing a total of 7, 314 acres of land with an estimated 1462,800 Rubber trees. The main plant species of the Park is Sal (*Shorea robusta*). The number of identified plant species in MNP is 176. Identified fauna species include 4 amphibians, 7 reptiles, 11 mammals and 38 bird species.

Modhupur National Park (Forest Carbon Inventory 2014)

Figure 6: Map of Modhupur National Park

3.4.6 Kaptai National Park (KNP)

Kaptai National Park (KNP), located in the Rangamati Hill District under the Chittagong division, was established in 1999 under the Bangladesh Wildlife Act 1974. The Park comprises an area of 5464 ha. KNP is unique for having the oldest social plantation project in the Indian Sub-continent and was famous for its Burma Teak trees. The area now comprises mainly of hills, valleys and forest, and is still one of the most popular tourism destinations of Bangladesh. TheKaptai Lake is the largest man-made fresh water body in Bangladesh, and other touristic attractions include the Kaptai Hydroelectric project and Karnafully paper Mill Project, both huge contributors to the overall economy of the country.

The surrounding 39 villages comprise of about 1885 households. These communities were most displaced during the building of the Kaptai Dam and Hydroelectric Power Plant in the 1960s, settling on the outskirts or moving to the inner parts of the KNP. They are engaged in a multitude of activities such as agriculture, pond and lake fish culture, vegetable cultivation, and bamboo and handloom products. jhum cultivation (Slash and Burn cultivation) by the ethnic communities like the Marma, and trading vegetable are also popular income options.

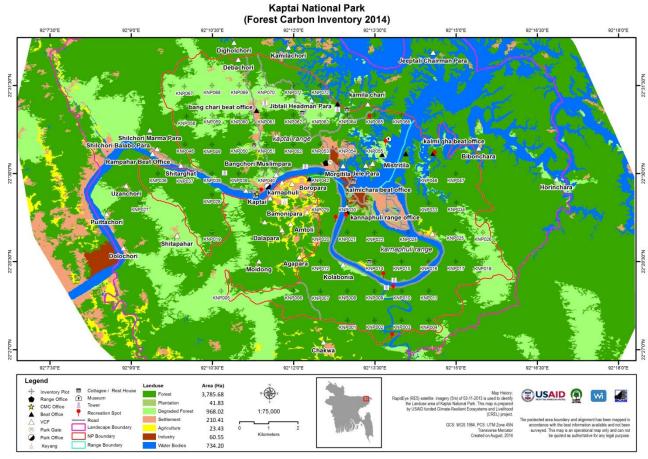


Figure 7: Map of Kaptai National Park

3.4.7 Chunati Wildlife Sanctuary (CWS)

Chunati Wildlife Sanctuary (CWS) was established in 1986, 70 km south of Chittagong City and is managed under the Wildlife and Nature Conservation Division. The total area of CWS is 7764 ha. CWS comprises mainly of secondary growth scrub, and extensive areas of sun grass, including some areas where plantations of exotic trees were initiated.

Around 9400 household with a population of approximately 48,913 people depend on resources (e.g. fuel wood, medicinal plants) from the area. Around 15 villages are very close proximity of CWS with around 70 settlements (paras).Within these settlements nearly one-third of the population is unemployed. Encroachers who settle on -forestlands are mostly people who have affected by riverbank erosion or have become landless due to various reasons. The local agricultural laborers typically find work for only six months a year and even during this time works is not available in a regular basis. Hence steady work is often not a viable option for many locals who otherwise engage in cutting firewood, trees and bamboo and other forest resources for commercial and household gain.

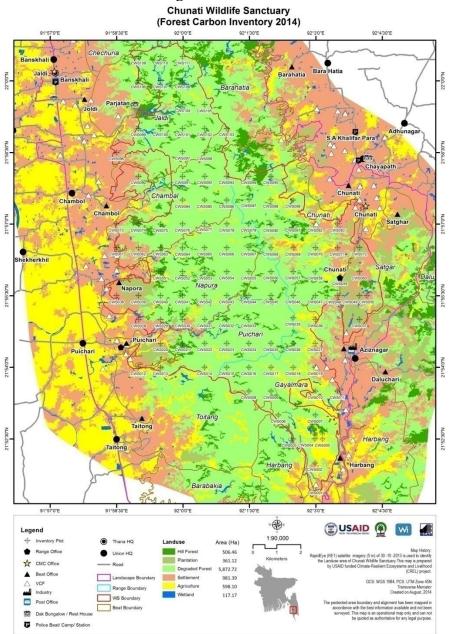


Figure 8: Map of Chunati Wildlife Sanctuary National Park

3.4.8 Himchari National Park (HNP:

Himchari National Park (HNP) is located by the side of the World's longest sea beach of Cox' Bazar. It was declared as National Park in 1980 under the Bangladesh Wildlife Act 1974. The Park comprises an area of 1729 ha with a buffer zone of 130 ha and Land escape area of about 700 ha. It is unique that the sea beach of Cox's Bazar is just along the western site and proposed Inani National Park is in the southern side. The area has got about 130 plant species, 12 species amphibians, 19 species reptiles, 389 species of birds, 35 mammals species.

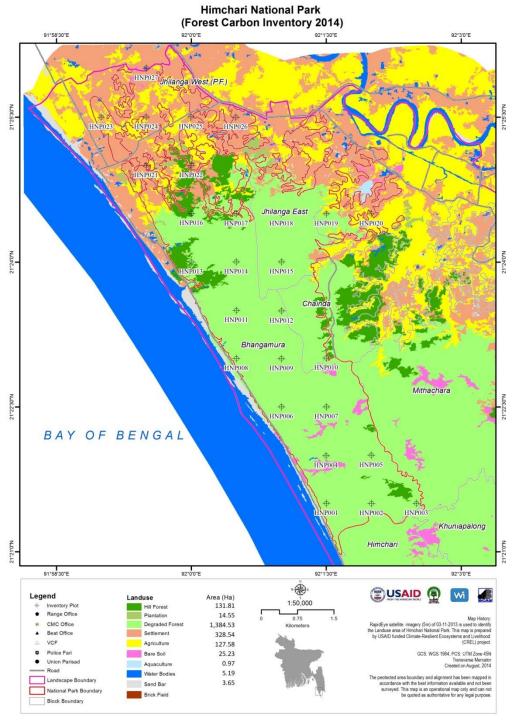


Figure 9: Map of Himchari National Park

4. Objectives of the Forest Carbon Inventory

The objectives of the 2014 forest carbon inventory at eight PAs were to:

- 1) Develop a Standard Operating Procedures (SOP) for forest carbon inventory,
- 2) Inventory of forest carbon stocks in different pools of eight PAs that can be used under a REDD+ framework and
- 3) Develop a biophysical baseline of selected PAs under the CREL project.

5. Definitions and Sampling Design

5.1 Definitions

Forest: Land spanning over more than 0.5 hectares with trees higher than 5 meters and a canopy cover of more than 10 percent, or trees able to reach these thresholds in situ. It does not include land that is predominantly under Agricultural or urban land use.

Degraded Forests: Any area of "forest" (see above definition) that has been impacted by human extraction of wood or other vegetation with canopy cover $\leq 30\%$.

Forest plantations: Forests of introduced species and in some cases of native species established through planting or seeding for production of goods and services, characterized by few species, straight tree lines and even-aged stands

Village forests: The village forests which build up homestead areas contain the houses, ponds, some cultivation fields and forest. The village forest are normally planted though some natural regeneration occurs and which contribute towards the everyday use of villager by supplying food, construction material, fodder and many other ancillary produce.

Settlements/developments: An area of developed land with little to no vegetation, such as a road or village.

Other wooded land: Land not classified as "forest", spanning more than 0.5 hectares; with trees higher than 5 meters and a canopy cover of 5-10 percent, or trees able to reach these threshold *in situ*; or with a combined cover of shrubs, bushes and trees above 10 percent. It does not include land that is predominantly under agricultural or urban land use.

Permanent agricultures – An area of agricultural land that is not allowed to natural re-growth. This could be an area deemed under continuous agriculture at least once every two years.

Wooded land with shifting cultivation (Fallow): It refers to woody vegetation deriving from the clearing of natural forest for shifting agriculture. The area is generally allowed to naturally re-grow (3-10 years fallow) before being cleared again.

Shrubs: Refers to vegetation types where the dominant woody elements are shrubs i.e. woody perennial plants, generally of more than 0.5 ha area and less than 5 m in height on maturity and without a definite crown. A *shrub* is distinguished from a tree by its multiple stems and shorter height, usually less than 6 m (20 ft) tall.

Herbaceous plants: An *herbaceous plant* is a *plant* that has leaves and stems that die down at the end of the growing season. A *herbaceous* border is a collection of perennial *herbaceous plants* (*plants* that live for more than two years and are soft-stemmed and non-woody).

Tea garden: An area identified as a tea garden.

Water bodies: An area of land that is inundated for the whole year or deemed inundated for a period during the year and agriculture may be practiced during dry seasons.

Seedlings: Seedlings includes all live trees less than breast height (1.3 m)

Saplings: Saplings includes all live trees reaching breast height (1.3 m), but having a Diameter at breast height (DBH or D or dbh)<5.0cm.

Trees: Trees includes all live woody stems reaching breast height (1.3 m), having a diameter at breast height of 5.0 cm or greater.

Standing Dead woods: Standing dead woods are dead trees but standing and usually measures as live trees (greater than 5.0 cm DBH and taller than 1.3 m) as well as stumps (when a current height of less than 1.3 m).

Lying dead woods: it refers all woody material on the ground with a diameter ≥ 10 cm. Lying dead wood is measured using the line-intersect method. However, smaller diameter pieces of lying dead woods are considered as litter.

Stumps: After a tree has been cut and felled, the stump or tree stump is usually a small remaining portion of the trunk with the roots still in the ground.

Litters: All dead organic surface material (including dead leaves, twigs, dead grasses, and small branches) on top of the mineral soil. Dead woods, on forest floor, with a diameter of less than 10 cm are considered as litter.

Soil Carbon: Soil C pool has three parameters namely i. soil depth, ii. Soil bulk density (BD; mass per volume), and iii.Organic carbon concentration (%OC).

Canopy Cover: Canopy Cover is a measure of presence or absence of forest canopy within a plot. It is estimated using densiometer readings at fixed distances from the plot center. This is measured as an average of 4 cardinal (North, South, East & West) readings of imaginary dots of the densiometer.

5.2 Sampling design and sample size

Remaining consistent with previous inventories, it was proposed to follow systematic sampling design at a spacing of 30" X 30" within the proposed PAs and their landscape forest reserves. Plots were manually stratified into major land uses prior to the inventory using high resolution satellite imagery. The plots falling in the water bodies were not measured. As best as can be estimated from the high resolution imagery the plots were stratified. The plots centers were plotted at 30" X 30" spacing in systematic way in Field Maps on google images as background with 1:15000 scales onto A0 paper size.

To estimate the number of plots needed to achieve the desired statistical precision for forest carbon (i.e. $\pm 6\%$ of the mean at 94% Confidence intervals) four PAs that were sampled in 2010 under the IPAC project were assessed. Based on these inventory results and parameters, sample size (n) is estimated in Table 1.

To estimate the number of plots needed to achieve the desired statistical precision for forest carbon (i.e. $\pm 6\%$ of the mean at 94% Confidence intervals) four PAs that were sampled in 2010 under the IPAC project. These PAs are Dudpukuria-Dhopachari WS, Fasiakhali WS, Medakachapia NP and Teknaf WS. Data of 2010 IPAC inventory were used to estimate the required number of plots with 12% allowable error. The statistical parameters and calculations are given in Table 1.

Statistics	Carbon, Ton/Ha (Live Trees)	Carbon , Ton/Ha (Dead Trees)	Carbon ton/ha (Saplings)	Carbon/ Ha (Seedlings)	Carbon/ Ha (Bamboo)	Carbon/ Ha (Cane)	Woody debris C ton/ha	Carbon/ Ha (Leaf- Litter)	Plant carbon (ton/ha)
st.dev	85.22	0.80	7.63	0.24	16.45	10.10	533.01	0.58	544.31
Mean	69.06	0.68	5.96	0.13	15.13	5.61	330.23	1.56	384.28
Ν	169.00	57.00	205.00	206.00	73.00	41.00	214.00	222.00	222.00
Т	2	2	2	2	2	2	2	2	2
%E	13.11	0.21	1.07	0.03	3.85	3.15	72.87	0.08	73.06
n- estimated	423	391	455	976	328	902	724	38	557

Table 1: Parameters of sample size (n) estimation for carbon inventory at proposed eight PAs

The minimum number of sample plots (n) was estimated based on Std. deviation, mean for the live tree carbon (ton/ha) calculated from previous data of Dudpukuria WS, Fasiakhali WS, Medakachapia NP and Teknaf WS using the formula:

n= (t*s/E)^2= (2*85.22/(69.06*0.12))^2=423

Where:

n= the number of sample plots (sample size),

t= the sample statistic from the t-distribution for 94% confidence interval; here t = 2 was used as the sample size for the present sites is not known.

s (std.dev.)= standard deviation estimated from the previous data of four PAs.

E = allowable error, Calculated by multiplying the mean carbon stock by the desired precision, i.e., mean (69.06) * 0.12 (for 12% precision)

It was observed that approximately 423 plots will be required to collect data to have an estimate of carbon stock with 12% allowable error. These plots were distributed among the 8 PAs in proportion to PA areas

(Table 2 and 3). When the plot centers, at 30"X30" spacing were plotted on maps n=468 plots were estimated. All the plots under forest category were taken for data collection; however, three (3) plots from each of Agriculture and settlements are considered; no plots will be taken from 'water' and 'other land uses'. Hence in total 468 plots were initially considered for data collection.

SI	Co-management Sites	Inventory area (ha)	Sample plots (n)	Forest	Settlement	Agricultur e	W ate r	Other s**	Total
1	Lawachara NP	2,600	34	29	1	0	0	4	34
2	Khadimnagar NP	679	10	9	0	1			10
3	Satchari NP	1,810	27	23	0	1	0	3	27
4	Rema-Kalenga WS	5,550	82	63	16	3	0	0	82
5	Modhupur NP	8,436	107	41	13	46	0	7	107
6	Kaptai NP	5,464	72	52	0	5	15	0	72
7	Chunati WS	7,764	112	86	26	0	0	0	112
8	Himchari NP	2,000	24	17	2	5	0	0	24
	Total	34,303	468	320	58	61	15	14	468

Table 2: Estimation of Plots falling in different land uses in eight PAs

* For settlements and agriculture, at least 3 plots were proposed to take from the closest proximity, if even minimum three plots are not available.

It was observed that approximately 468 plots were required to collect data to have an estimate of carbon stock with 12% allowable error. These plots were distributed among the eight PAs in proportion to PA areas. When the plot centers, at 30"X30" spacing were plotted on maps n=403plots fallen within the area. All the plots under forest category were taken for data collection and three (3) plots from each of Agriculture, settlements and other land uses were proposed. No plots were taken from 'water'. Others include tea garden, Rubber plantation; Water and fallow land- are not considered for data collection. Hence finally data were collected from 377 sample plots (Table 3).

Table 3: Tentative number of sample plots for data collection in different land uses in eight PAs

Sl	Protected Area/ Co- management Sites	Inventoried area (ha)	Estimated sample plots (n)	Plots within proposed area (n)	Data collected (n)
1	Lawachara NP	2,600	34	42	31
2	Khadimnagar NP	679	10	9	9
3	Satchari NP	1,810	27	34	20
4	Rema-Kalenga WS	5,550	82	72	63
5	Modhupur NP	8,436	107	54	59
6	Kaptai NP	5,464	72	68	57
7	Chunati WS	7,764	112	92	111
8	Himchari NP	2,000	24	23	27
	Total	34,303	468	403	377

6. Field Inventory

The training to carry out the Forest Carbon Inventory was organized at Lawachara in between March 18-20, 2014. The field inventory team members were trained on the use of field equipment and methods. The trainees learned the Standard Operating Procedures (SOP) of measurements, practiced the use of instruments, and discussed probable questions regarding the inventory process. CREL provided all the logistics required to organize the training program. The experts from CREL, FD & BFRI put their full hearted efforts to make the training towards a successful Forest Carbon Inventory 2014 in the eight Protected Areas (PAs) required for establishing the carbon baseline.

The team leaders, NRM personnel and some of the students had participated in the training. The team leaders worked mostly as recorders and reviewers of data. The foresters and students worked as enumerators. Before starting field work each day, the groups sat together with detailed maps and GPS units to plan for the next plots. Local knowledge of laborers, guards, and FD staff aided the crews' efforts to find suitable routes to plots and minimize hiking time. Generally each group completed 2-3 plots per day, but often this pre-planning activity helped the groups to complete more than 3 plots a day. The field data collection started from March 24, 2014 and continued up to 2^{nd} week of May, 2014.

6.1 Data and Sample Management

Field data were entered into ODK and later computerized spreadsheets and backed up electronically in multiple physical locations. Strict precautionary measures were taken in the process of data collection and data entry to minimize error. Completed data forms were checked and reviewed in the field. The data entry was reviewed by BCAS officers. At the end of the inventory, completed data forms were stored in physically secure locations at CREL office. The final electronic data files, including one version with only field-collected numbers and one version with computations have been stored with CREL office and drop box. Soil, litter and herbaceous samples were sent to BFRI, Chittagong for analyses.

6.2 Personnel and Training

The Forest Carbon Inventory field data collection was carried out by five inventory teams. Each team was headed by the concerned Assistant Conservator of Forest (ACF) from the local Forest Division. The other members of the field data collection team were as given below:

CREL NRM Officer/Monitoring Officer/NRM Facilitator -as Deputy Crew/Team Leader-1 Local Forester/Beat Officer-1 Forestry graduate student-1 Local Forest Guard -1 Local CMO representative -1 Local labour-1 The plot locations were superimposed on Google maps and classified recent imageries for land uses (e.g. Forests, Degraded Forests, Agriculture, Settlements/developments and Water bodies). The plot locations (latitude &longitude) of the plots for each PA were uploaded to each team's GPS. The team members of the teams approached to the plots with the help of the map and GPS. A set of field data collection forms were designed for data collection and are presented in Appendix-I.

The starting points for access to the plots were marked as way points by signs on trees or by recording the GPS co-ordinates. After reaching to the plot center, the plot center was marked with a uPVC pipe or a stake driven into the soil. Then, marked three trees that generally surround the plot center and that are as close as possible to plot center with a small dot at DHB height facing plot center, so that they can be used to triangulate plot center in the future if the stake cannot be found.

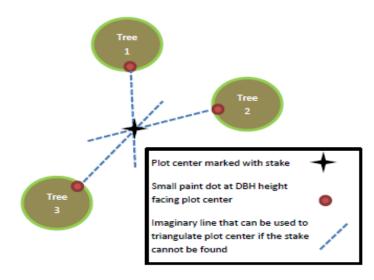


Figure 10 Example of how to mark the 3 trees around plot center so that they can be used to triangulate plot center in the future if the stake cannot be found.

It was decided to take concentric circular plots of radii 2m,4m, 10m and 17.84m. The plot layout is given in Figure 3.

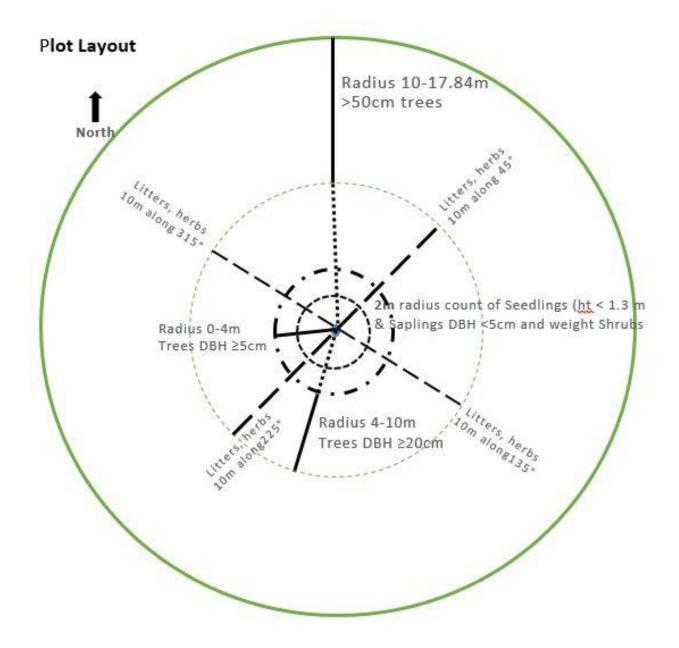


Figure: 3. Plot layout for Carbon Inventory 2014 at 8 PAs in Bangladesh

6.4 Parameters recorded/ measured:

The parameters were recorded/ measured from different sample plots are given in Table 4.

Parameters	Activities	Plot radius (m)
Seedlings count	Counted the number of live seedlings ≤ 1.3 m tall for all species.	2

Table 4: Forest carbon plot dimensions for data collection from different pools

Parameters	Activities	Plot radius (m)
Saplings count	Counted the number of live saplings with DBH \leq 5.0 cm & Height> 1.3 m for all species & recorded the name of the dominant species.	2
Trees DBH	Measured DBH of all trees (including standing dead trees) with DBH > 5.0cm with species name Measured stumps (≥ 10 cm base diameter) diameter	0-4
Trees DBH	Measured DBH of all trees (including standing dead trees) with DBH >20.0cm with species name Measured stumps (≥ 10 cm base diameter) diameter	4 - 10
Trees DBH	Measured DBH of all trees ≥50 cm (including standing dead trees), with species name; Measured Stumps (≥10 cm base diameter)diameter	10 - 17.84
DBH, heights &counts	Recorded data for non-tree woody (Bamboos and canes). Plot radius was variable with intensity of occurrences.	2, 4, 10 or 17.84
Palm DBH & height	Measured the height of all palm species, and if available DBH	0 – 10
Trees height	Measured heights of three co-dominant trees	17.84
Lying deadwood	Measured all lying dead wood≥10cm diameter, if it is ≥50% above the ground. Measured along transect line from plot center to 25m at each cardinal direction (45, 135, 225 & 315 degrees)	25m long, 4 transects
Litter	Measured Litter layer from clip plots of 50cmX 50cm square plot; laid out at 10 meters from the center of the plot at four transects at 45, 135, 225 and 315 degrees. Mixed the four samples thoroughly and took a sub-sample (200-300g) for oven-dry weight estimation.	Square clip plot 50cmX 50cm
Grass and herbs	Cut and measured grass and herbaceous vegetation from the square clip plots described above (litter). Mixed the four samples thoroughly and took a sub-sample (200-300g) for oven-dry weight estimation.	Square clip plot50cm X 50cm
Weight of shrubs	In case of plots with shrubs only: Cut all shrubs, took weight of all shrubs and took one sub-sample (200-500g) of the shrubs for oven-dry weight estimation.	2
Soil Organic Carbon	Soil Samples for estimation of organic carbon were taken using soil sampler/pit method at 4 locations (covering valley, slope and flat) to 0-30cm depth. All 4 samples were mixed thoroughly and then took a sub sample (200-300g) for laboratory analyses.	Sample depth 0- 30cm
Soil Bulk Density	Soil samples for estimation of bulk density (BD) were taken from two depths (0-15 cm and 15-30 cm). Each bulk density sample was placed in an individual air-tied sample bag for lab analyses.	Sample depths:0- 15 cm & 15-30 cm

Parameters	Activities	Plot radius
		(m)
Canopy	Took canopy cover with Densiometer at the end of 10 meters	At the end
cover	from the plot center at four cardinal directions at due north, east,	of 10m
	south & west.	

Described land and vegetation conditions of plot (Form-1) and if there is anything unique or unusual in the plot or directly surrounding the plot. This could include things such as small streams, trails, large boulder or termite nest, and proximity to a paved road. Took four photos of the plot and recorded the photo numbers on the plot sheet.Each photo was taken facing each of the cardinal direction (N, E, S, W).

6.5 Measurements of Seedlings, Saplings, Trees and Palms.

The number of seedlings was counted and recorded on data Form 2. Similarly, counted the number of saplings (sapling trees with DBH<5 cm and >1.3 m tall) and recorded. The name of the most dominant species was also recorded. Then, measured the trees at different concentric radii plots of different DBH classes. To avoid either miss trees or double recording, measurement began from the North and the first tree was flagged. After a tree is measured, a chalk mark facing the center of the plot was marked to allow the person recording the data to track measured and unmeasured trees.

The DBH was measured on the *upslope* side of the tree. Leaning tree were always measured the height of a measurement (1.3 m) parallel with the tree, *not* perpendicular to the ground. Multi-stem tree were recorded it as if each stem were a different tree on the data sheet with a note that the stems make up one tree. For buttressed tree, if the buttress is shorter than 1.3 m, measured the DBH at the standard (1.3 m) height and if the buttress is taller than 1.3 m, measured the diameter at 30 cm above top of buttress. Marked the height of the measurement with a spot of paint. Tree DBH was measured to the nearest 0.1 cm. The height of trees, palms, and other plants were usually measured by creating two right triangles. The distance from the object and the person measuring was measured and two angles were measured. The actual height was then calculated using trigonometry during data analysis.

The height has a better relationship with biomass than DBH for palm. Heights of palms were measured and recorded on the data sheet Form 2 for all palms in the 10m plot with bole height \geq 1.3m. All smaller palms were ignored.

6.6 Measurements of Stumps from Human Degradation

To estimate the carbon loss due to human interference, measured the base diameter in cm of all stumps with a base diameter ≥ 10 cm within the 17.84m plot & recorded Form 3A. Recorded yes or no if the stump results in a canopy gap in the forest. A canopy gap is a clear opening (no branches or leaf cover) in the forest canopy that would not otherwise be there if the tree had not been cut. If yes, recorded whether the canopy gap is small, medium or large.

• Small: the gap seems to be no less than 5m across on average. Sunlight would probably not reach the forest floor or only for about an hour per day.

- Medium: the gap seems to be less than 15m across on average. Sunlight would likely reach the forest floor for more than a few hours.
- Large: the gap seems to be greater than 15m across on average. Sunlight would likely reach the forest floor for more than a few hours.

6.7 Measurement of Dead Wood

6.7.1 Measurement of Standing Dead Wood (not cut by humans)

Standing dead wood refers to trees that have died but are still upright. Measurements of standing dead wood took concurrently with live tree measurements (following the same plot dimensions as live trees) and record in Form-4A. Each standing dead tree was marked as dead on the plot sheet and classified into two classes (see Figure below):

Class 1: Dead tree with branches and twigs and resembles a live tree except for absence of leaves (make sure tree is dead and not deciduous)

Class 2: Trees ranging from those containing small and large branches to those with bole only

By classifying trees into these two simplified classes, a conservative estimate of biomass was taken.

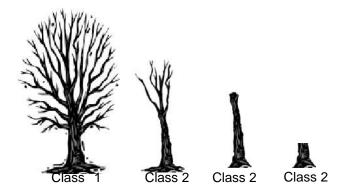


Figure 4: Example of trees in Class 1 and Class 2

Class 1 tree: Followed the same measurement procedures as for the measurement of live trees; including the measurement of tree variables. Marked tree as 'Dead' on datasheet.

Class 2 trees: The biomass of these trees was based on estimating the volume of the remaining tree and multiplying the volume by the wood density. The DBH was measured using methods for live trees. The diameter at the base of the tree (D_{base}) was also measured followingheight of stem (H). The diameter at top of stump ($D_{top.}$) if possible was also measured.

6.7.2 Measurement of Lying Dead Wood:

Lying dead wood is defined as all woody material on the ground with a diameter ≥ 10 cm. Smaller diameter pieces of wood were sampled as part of the litter pool.

It is common to locate lying dead wood transects in association with tree plots. Along the four transects. Four 25 m lines at right angles within the land use type along the four cardinal directions were laid out. Along the length of the line, measured the diameter of each intersecting piece of coarse dead wood (≥ 10 cm diameter.

A piece of dead wood was measured if: (a) more than 50% of the log is aboveground, and (b) the sampling line crosses through at least 50% of the diameter of the piece.

If the log is hollow at the intersection point, measured the diameter of the hollow; the hollow portion in the volume estimates was excluded. Each piece was recorded into three density states: sound, intermediate, or rotten. To determine what density class a piece of dead wood fits into, each piece was struck with a machete. If the machete did not sink into the piece (bounces off), classified it as sound. If the machete sinks partly into the piece, and there had some wood loss, classified it as intermediate. If the machete slicked into the piece, if there were more extensive wood loss, and the piece was crumbly, classified as rotten. The volume of lying dead wood and then carbon stocks were estimated using the diameters of each piece of wood and the length of the line transect.

6.8 Measurement of non-tree vegetation

6.8.1 Measurement of bamboos and canes

Non-tree vegetation pool of carbon includes herbs, shrubs, bamboo, cane, lianas etc. The size classes of bamboos were divided into small, medium, and large. Small was based on an average stem size >4cm, medium was based on average stem sized \leq 4cm and <8cm, and large \geq 8cm.Depending on the intensity of occurrence, measured the DBH and Height of average bamboo culm for each class from 2m or 4 m or 10 m or 17.84m radius were recorded in Form-5.If the bamboos formed a clump the number of stems was estimated to the best of the ability of the field team. The canes were measured similarly.

Figure 11: CCF visits to Forest Carbon Inventory

6.8.2 Measurement of other non-tree vegetation:

The small areas where litter and herbaceous (non-woody) were measured are here referred to as 'clip plots'. A square clip plot frame made of PVC pipe 50 cm x 50 cm were made for sampling. It remained in pieces so that it could construct around existing vegetation. The 'elbows' used to connect two pieces of piping together were glued to one piece of piping.

The weight of an empty polyethylene bag was taken and recorded. Then placed the clip plot at one of the desired four locations, removed all herbaceous plants, put in the polyethylene bag, then took the weight and recoded the weight. This weight was the weight of empty polyethylene bag + the weight of the herbaceous plants. Similarly, weights of the herbaceous plants were taken from remaining three locations and weights were recorded. Then all the four herbaceous plant samples were placed in the bag, thoroughly mixed and a subsample of about 100-150 g was taken. The samples were then labeled with plot ID#, herbaceous plants, date of collection and latter send for estimating oven dried weight.

6.9 Measurement of Litter:

The litter was defined as all dead organic surface material on top of the mineral soil. Some of this material was still be recognizable (dead leaves, twigs, dead grasses, and small branches) and some was unidentifiable decomposed fragments of organic material. Note that dead wood with a diameter of less than 10 cm was included in the litter layer.

Clip plots were used to sample litter and the same clip plots were also used for herbaceous vegetation measurements. The weight of an empty polyethylene bag was taken and recorded. Then placed the clip plot at one of the desired four locations, removed all litters, put the litters in the polyethylene bag, then took the weight and recoded the weight. This weight was the weight of empty polyethylene bag + the weight of the litters. Similarly, weights of the litters were taken from remaining three locations and weights were recorded. Then all the four litter samples were placed in the bag, thoroughly mixed and a subsample of about 100-150 g was taken. The sample was then labeled with plot ID#, litter, date of collection and latter send for estimating oven dried weight.

6.10. Destructive Samples of Seedlings, Saplings, Palms, Bamboos, Shrubs and others

We have volume table and densities of all important tree species in Bangladesh (Appendix II). We used these for estimation of biomasses of trees. But, we do not have equations/models to estimate the biomasses of seedlings, saplings, bamboos, canes& shrubs. We collected destructive samples for estimation of biomasses for these.

6.10.1 Measuring the Weight of an Average Sapling & Seedling

The weight of an empty polyethylene bag was taken and recorded. Then selected one/two representative saplings covering the full range of sizes (from small to large samples) were cut and put in the polyethylene bag (cutting into small pieces if required), then took the weight and recoded the weight. This weight was the weight of empty polyethylene bag + the weight of the saplings.

Then a subsample of about 100-150 g was taken. The sample was then labeled with plot ID#, sapling, and date of collection and latter send for estimating oven dried weight.

Similarly, seedlings were cut, weight and properly labeled and latter send for estimating oven dried weight.

6.10.2 Destructive Sampling of non-tree vegetation

The weight of an empty polyethylene bag was taken and recorded. Then, one representative vegetation covering the full range of sizes (from small to large samples) were cut and put in the polyethylene bag (cutting into small pieces if required), then took the weight and recoded the total weight. This weight was the weight of empty polyethylene bag + the weight of the vegetation. Then a subsample of about 100-150 g was taken. The sample was then labeled with plot ID#, vegetation, and date of collection and latter send for estimating oven dried weights.

6.11 Canopy cover

Canopy Cover is a measure of presence or absence of forest canopy within a plot. It is estimated using densiometer readings at fixed distances from the plot center. This is measured as an average of 4 cardinal (North, South, East & West) readings of imaginary dots of the densiometer.

A spherical densiometer was used to estimate canopy cover. The densiometer was hold about 30-40 cm in front of body of the observer and at elbow height, so that head is not visible in the mirror and level the instrument using the level bubble.

In each square of the grid, there are four dots, representing the center of quarter-square subdivisions of each of the squares (Figure 12). Systematically counted the number of dots NOT occupied by canopy sky at that dot).Recorded this number on the datasheet. Made four readings per plot at 10m from plot center in each of the 4 cardinal directions (north, south, east, and west).

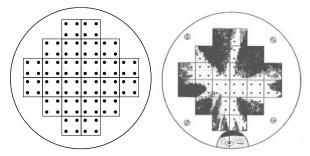


Figure 5: Schematic of densiometer mirror, with the 4 dots depicted in each square. Count the number of dots NOT occupied by the canopy, in the 4 cardinal directions at each subplot.

6.12 Soil % Organic Carbon and Bulk density

Soil carbon was estimated by collecting soil to a depth of 0-30 cm and then analyzing it at BFRI laboratory for carbon content. This information was then combined with a collected bulk density measurement to estimate the average mass of carbon within the soil to a certain depth.

6.12.1 Soil % Organic Carbon

We collected soil samples following Soil pit method. Pits were dug one at top, one at valley, one at slope and the last one on flat locations(covering all different soil carbon deposits), took a uniform thick slice (0-30 cm) of soil from vertical walls of each of four soil pits. The slice was uniform throughout the 30 cm profile. Then mixed all four samples thoroughly to a uniform color and consistency and placed one thoroughly mixed subsample of about 200 gram soil into a labeled sample bag for laboratory analyses. The bag was labeled as % OC with Plot ID number and date of collection.

6.12.2 Soil Bulk Density

Took one the pit for collection of soil sample for estimation of Bulk density. Two estimates of bulk density were taken using a bulk density ring one at 0-15cm depth and a second at 15-30cm depth. When taking samples of bulk density, care was taken to avoid any loss of soil from the ring and any compaction of soil. The goal of the bulk density sample is to get an accurate quantity and density of soil from each layer. Covered the bulk density ring with a piece of wood and hammered the ring into the soil pit (avoid compacting the soil).

When the ring was flush with the side of the soil pit dug around the ring until the soil ring could be removed along with all the soil inside. If soil falls out of the ring, the process was repeated. Carefully placed the soil contained in the bulk density ring into a sample bag and labeled BD1 and BD2 along with Plot ID number.

Therefore, each sampling plot (e.g. tree plot) had three soil samples: 1 bag for soil carbon estimation and two bags for bulk density estimation. We collected soil samples from three plots for each of the major land uses.

6.13 Laboratory Processing of Soils and plant samples

Soils samples were sent to BFRI laboratory for estimation analyses following the standard procedures. The analyzed data were used for soil carbon estimation. The non-tree vegetation subsamples were also been sent to determine the oven dry weight. These data have been used to estimate the forest carbon and carbon dioxide reserved in the forest.

7. Data compilation:

During the data collection, the data were entered in ODK. But at the end, it was not possible to down load the data. So, data were entered manually in computer following the data collection Forms. The data forms were handy and easy to computer processing. The data compilations were done as given below:

7.1 Live Trees:

- 1) Above ground Volume (cm³) = Estimation of volume by using available volume functions table (Appendix II).
- 2) Wood densities from wood density table (Appendix II).
- 3) Adjusted plot area $(m^2) = COS (RADIANS(Slope in degrees))*PI()*(Plot radius)^2 (The terrain was hilly. So, slope corrections were necessary to get the proper estimates.$
- 4) Plot area expansion factor to hectare = 10000/Adjusted plot area
- 5) Above ground biomass (g/cm^3) = Volume (cu cm) * Wood density (g/cm^3)*1.2 (a factor to includes biomasses of branches + leaves (factor)
- 6) Gram biomass to Kilograms: (Kg = No. 5/1000)
- 7) Plot area expansion factor *biomass (volume*density)*0.5 (to convert biomass to carbon and then divide by 1000 (to convert kilogram to tone, Mg/ha)
- Above ground CO2= Above ground C*44/12 is the above ground CO2 adjusted (Mg/ha)
- 9) Below ground CO2 adjusted (Mg/ha) = Above ground CO2 (Mg/ha)*.24
- 10) The sum of 8 and 9 above gives the total CO2 Mg/ha.

The detailed procedures and results are given in different worksheets of the spreadsheet files.

7.2 Compilation of Stumps:

For human degradation and loss

- 1. Estimate the volume of the stumps in cubic centimeters
- 2. Consider a stump height (say here it is 20 cm)
- 3. The plot radius for stump plots was 17.84m.
- 4. Convert the slope in degrees (as it was taken in %) = Degrees(ATAN(slope %/100))
- 5. Estimated the adjusted plot area as the field is not flat as=COS(RADIANS(DEGREE))*pi()*plot Radius^2
- 6. Calculate the plot area expansion factor to hectare=10000/Adjusted plot area
- 7. Estimate the volume per tree by using available volume function for the species, if not found then use function for misc. species
- 8. Record the wood density.
- 9. Estimate biomass in kg=PI()*(base diameter/2)^2*stump height/10000
- 10. C carbon=Biomass in kg*0.5
- 11. Estimate below ground C stump Mg)= Above ground biomass*0.24
- 12. Above ground C adjusted (Mg/ha)=Plot area conversion factor to hectare*C of the stump (Mg)
- 13. Estimate the below ground C adjusted (Mg/ha)= Above ground AC4*W4
- 14. Above ground CO2 adjusted (Mg/ha)= C biomass*44/12
- 15. Below ground CO2 adjusted (Mg/ha)= Above ground CO2 adjusted (Mg/ha)*0.24
- 16. The sum of above 14 and 15 is the total stump CO2 Adjusted (Mg/ha)
- 17. Estimate the biomass of the tree prior to cutting (Kg)=Volume*density/1000
- 18. Estimated above ground CO2 adjusted (Mg/ha)=Estimated above ground C with branches and leaves*44/12
- 19. Below ground CO2 = Above ground CO2 adjusted *0.24
- 20. Total CO2 is the sum of 18 and 19 above.

7.3 Standing dead wood:

- 1. Volume(cu cm)=1/3*pi()*(Base diameter/2)^2*stump height in centimeter
- 2. Adjusted Plot area= COS(RADIANS(DEGREE))*pi()*plot Radius^2
- 3. Plot area expansion factor to hectare=10000/ Adjusted Plot area
- 4. Biomass (Kg) above ground including branches and eaves=Volume*density*1.2/1000
- 5. Above ground C adjusted (Mg/ha)= Plot area expansion factor to hectare*biomass above ground*0.5/1000
- 6. Above ground CO2 adjusted (Mg/ha)= Above ground C adjusted (Mg/ha)*44/12
- 7. Below ground CO2 Adjusted (Mg/ha)= Above ground CO2 adjusted (Mg/ha)*0.24

7.4 Lying dead wood:

Lying dead wood is measured using the line-intersect method outlined in Harmon and Sexton (1996)1. Lying dead wood is defined as all woody material on the ground with a diameter >10 cm. Smaller diameter pieces of wood are sampled as part of the litter pool.

7.5 Non-tree Vegetation:

- 1.Biomass above ground=Number of clump*number of culm/clump*averageweight/culm*conversion factor to estimate oven dry weight from green weight
- 2.Above ground C adjusted (Mg/ha) = Plot area expansion factor to hectare*above ground biomass* conversion factor to estimate oven dry weight*0.5/1000
- 3. Above ground CO2 adjusted (Mg/ha) = Above ground C adjusted (Mg/ha) *44/12
- 4.Below ground CO2= Above ground CO2 adjusted (Mg/ha) *0 .24
- 5.3+4 above gives the total

7.6 Saplings & Seedlings:

- 1. Adjusted plot area (m²)=Cos(Radians(slope in degrees)*pi()*Plot rarius²
- 2. Plot area expansion factor to hectare=1000/ Adjusted plot area
- 3. C biomass above ground (Kg)=Number of saplings*weight per seedlings*wood density*0.5/1000
- 4. C below ground = C biomass above ground (Kg)*0.24
- 5. Above ground C/ha adjusted =Plot area expansion factor to hectare*C Biomass above ground(Kg)/1000

7.7 Litters/Herbaceous:

- 1. Adjusted plot area (m²)=Cos(Radians(slope)*pi()*Plot radius²
- 2. Plot area expansion factor to hectare=10000/Adjusted plot area

¹ Harmon, M. E. and J. Sexton. 1996. Guidelines for measurements of woody detritus in forest ecosystems. Publication no. 20. U.S. Long-term Ecological Research (LTER) Network Office, University of Washington, Seattle, Washington,

- 3. C biomass above ground (Kg)=Litter weight/plot*conversion factor to estimate oven dry weight
- 4. Above ground C adjusted (Mg/ha) = Plot area conversion factor to hectare*C biomass above ground(kg)*0.5/1000
- 5. Above ground CO2 adjusted (Mg/ha)= Above ground C adjusted (Mg/ha)*44/12
- 6. Below ground CO2 adjusted (Mg/ha) = Above ground CO2 adjusted (Mg/ha)*0.24
- 7. 5 + 6 above make the total

8. Results:

A total of nine distinct land cover classes were identified in the PAs inventoried. The area distributions were found as follows (Table 5) from GIS analysis of satellite imageries:

Land cover Classes	HNP	CWS	KhNP	KNP	LNP	MNP	RKWS	SNP	Total (ha)
Forest	132	507	479	3,786	1,400	2,233	4,782	953	14,272
Plantation	15	361	-	42	-	578	93		1,088
Degraded land	1,385	5,873	198	968	509	-		657	9,589
Settlement	329	981	1	271	310	2,872	68	-	4,831
Bare land	29	-	-	-	-	-			29
Rubber					0	495		92	587
Теа			98		227		20	104	450
Agriculture	128	598	3	23	137	2,083	555	1	3,528
Water bodies	6	117	-	734	17	54	4	4	936
Total PA Area (ha)	2,022	8,437	779	5,824	2,599	8,315	5,523	1,810	35,309

Table 5: Area (ha) estimates for different PAs and land cover classes

The number of sample plots laid out in each PA for each land cover classes are given in Table 6.

Land cover		Number of Sample Plots in each Protected Area by Land cover								
classes	KhNP	LNP	SNP	RKWS	MNP	KNP	CWS	HNP	Total	
Forest	5	12	5	46	35	17	21	1	140	
Plantations	1	12	11	13	12	24	26		99	
Degraded Forest	3	4	3	1		13	56	20	100	
Settlement		1			3	2	4	6	16	
Bare land		1							1	
Rubber					6				6	
Tea garden		1							1	
Agriculture			1	3	3	1	4		12	
Total Plots	9	31	20	63	59	57	111	27	377	

Table 6: Distribution of sample plots at different land cover classes based on inventory

The number of seedlings, saplings, trees, stumps per hectare were estimated and given in Table 7.

PA and Land cover classes	Seedlings (N/ha)	Saplings (N/ha)	Live trees (N/ha)	Stumps (N/ha)
Chunati WS	4,366	2,165	1,035	23
Forest	8,412	3,752	1,321	138
Degraded forest	810	441	655	21

Table 7: Number of seedlings, saplings, trees, stumps per ha

PA and Land cover classes	Seedlings (N/ha)	Saplings (N/ha)	Live trees (N/ha)	Stumps (N/ha)
Plantation	9,886	4,989	1,745	32
Settlement	1,393	1,790	1,278	6
Agriculture	-	-	-	5
Himchari NP	2,034	2,947	169	-
Forest	3,183	-	1,027	-
Degraded forest	2,546	3,939	60	-
Settlement	133	133	387	-
Kaptai NP	939	235	1,012	631
Forest	1,966	328	1,298	560
Degraded forest	140	187	316	425
Plantation	862	199	1,359	1,960
Settlement	398	398	828	1
Agriculture	-	-	-	-
Khadim NP	884	796	954	6
Forest	1,326	531	1,017	5
Degraded forest	-	1,989	360	1
Plantation	-	-	1,768	-
Lawachara NP	3,130	4,881	1,426	25
Forest	4,775	3,382	1,976	370
Degraded forest	2,918	18,568	284	20
Plantation	2,255	4,178	1,319	29
Settlement	796	-	1,903	-
Bare Land	-	-	113	-
Tea Garden	-	-	381	-
Water bodies				-
Modhupur NP	30,312	4,847	1,835	12
Forest	53,184	7,666	2,500	193
Plantation	4,509	2,785	1,135	1
Settlement	4,775	1,061	1,290	3
Agriculture	-	-	-	-
Rubber	455	-	1,204	-
Rema-Kalenga WS	10,678	2,961	1,466	36
Forest	12,118	3,321	1,602	480
Degraded forest	11,141	10,345	-	-
Plantation	6,366	1,347	1,195	18
Agriculture	-	-	160	-
Satchari NP	3,104	1,711	895	24
Forest	5,093	2,706	1,059	200
Degraded forest	531	1,061	236	10
Plantation	3,183	1,592	1,045	50

PA and Land cover classes	Seedlings (N/ha)	Saplings (N/ha)	Live trees (N/ha)	Stumps (N/ha)
Agriculture	-	-	393	-
Grand Total	8,233	2,592	1,178	33

The CO2 stocks at different PAs and land cover classes are estimated and given in Table 8. It was observed that the total carbon CO2 (Mg) stock in eight PAs was 8,025,200 Mg. The carbon stock varied from 52.8 to 381.4 CO2 Mg/ha among the PAs. The highest carbon stock was observed at Rema-Kalenga WS (381.4 CO2 Mg/ha) and lowest at Himchari NP (52.8 CO2 Mg/ha).

PA and Land cover classes	Live Trees CO2 (Mg/ha)	Dead Trees CO2 (Mg/ha)	Litter CO2 (Mg/ha)	Non- trees CO2 (Mg/ha)	Soil Carbon (Mg/ha)	Total CO2 Mg/ha	PA Area (ha)	Total CO2 1000 Mg (Gg) of the PA
Chunati WS	103.8	0.2	8.9	10.5	23.1	146.4	8,319.8	1,218.0
Forest	149.6	0.0	14.0	12.3	22.0	198.0	506.5	
Degraded forest	75.4	0.2	7.4	6.4	27.1	116.6	5,872.7	
Plantation	139.4	0.3	8.8	20.4	17.1	186.0	361.1	
Settlement	132.6	0.5	6.8	2.7	20.6	163.2	981.4	
Agriculture	-	-	4.8	0.7	13.0	18.6	598.1	
Himchari NP	37.9	0.4	0.1	0.2	14.2	52.8	1,859.4	98.2
Forest	101.1	-	-	-	16.2	117.3	146.4	
Degraded forest	11.8	-	0.2	0.2	17.2	29.4	1,384.5	
Settlement	114.5	1.7	-	0.0	3.8	120.1	328.5	
Kaptai NP	222.0	3.3	5.0	1.0	27.2	258.5	5,089.9	1,315.6
Forest	276.8	8.4	8.0	2.2	27.3	322.7	3,785.7	
Degraded forest	57.9	0.3	2.6	0.6	27.2	88.8	968.0	
Plantation	316.9	2.0	5.0	0.4	27.1	351.4	41.8	
Settlement	123.5	2.9	1.7	0.9	26.4	155.4	271.0	
Agriculture	-	-	-	-	27.1	27.1	23.4	
Khadimnagar NP	264.2	-	7.1	0.8	26.3	298.3	676.6	201.9
Forest	330.6	-	9.4	1.1	21.5	362.5	479.0	
Degraded forest	40.3	-	-	-	39.4	79.7	197.6	
Plantation	313.4	-	7.7	0.8	29.0	350.9	na	
Lawachara NP	278.1	4.0	8.9	1.5	42.1	322.9	2,955.2	954.4
Forest	411.0	3.3	11.4	0.8	44.2	470.7	1,909.6	
Degraded forest	25.8	25.3	6.4	4.1	37.0	98.8	509.2	
Plantation	241.1	0.3	8.0	1.8	40.7	291.9	na	
Settlement	308.8	-	-	-	41.8	-	309.6	
Bare Land	27.8	-	10.5	2.3	40.1	80.7	na	
Tea Garden	105.1	-	3.8	0.6	50.7	160.3	226.9	
Modhupur NP	195.5	-	6.4	0.8	32.2	234.8	8,261.1	1,939.6
Forest	238.6	-	7.7	0.7	30.5	277.6	2,233.3	

Table 8: Stock of CO2 at different cover classes at Forest Carbon inventoried eight PAs.

PA and Land cover classes	Live Trees CO2 (Mg/ha)	Dead Trees CO2 (Mg/ha)	Litter CO2 (Mg/ha)	Non- trees CO2 (Mg/ha)	Soil Carbon (Mg/ha)	Total CO2 Mg/ha	PA Area (ha)	Total CO2 1000 Mg (Gg) of the PA
Plantation	147.1	-	4.3	0.3	37.1	188.9	578.1	
Settlement	138.6	-	5.9	0.3	18.3	163.1	2,871.6	
Agriculture	-	-	1.3	-	34.0	35.2	2,082.8	
Rubber	201.5	-	6.8	2.2	35.8	246.2	495.2	
Rema-Kalenga WS	329.5	0.0	5.3	0.9	45.7	381.4	5,430.4	2,071.4
Forest	379.0	0.0	5.6	0.7	47.0	432.4	4,782.3	
Degraded forest	1.1	-	1.8	0.3	44.0	47.2	na	
Plantation	202.1	-	5.0	1.6	41.1	249.8	93.0	
Agriculture	37.5	-	-	-	42.9	80.4	555.1	
Satchari NP	219.1	0.3	11.5	1.0	33.9	265.8	1,610.4	428.0
Forest	259.4	0.4	13.8	0.9	39.3	313.7	952.8	
Degraded forest	79.6	-	5.1	1.4	38.1	124.1	656.9	
Plantation	247.0	0.3	12.9	0.8	31.5	292.5	na	
Agriculture	128.6	-	2.9	3.6	22.4	157.5	0.7	
Grand Total	192.6	1.0	6.8	3.7	30.3	233.5	33,797. 2	8,025.2

Total area inventoried (in 8 PAs) –33,797.2 ha Total CO2 Stock (Mg) in 8 PAs –8,025,200 Mg Stock (CO2) - 237.5 Mg/ha

This inventory shows the CO₂ stocks per hectare for each of the PAs sampled in this inventory (Table 9) along with error bars representing 90% confidence intervals (Figure 7). Confidence intervals for the different PAs ranged from $\pm 11-31\%$ of the mean, with exceptional at Khadimnagar NP ($\pm 60\%$). Recommended targets from the UNFCCC are $\pm 10\%$ of the mean at a 90% confidence interval; therefore at an individual PA level forest carbon stocks had relatively poor precision, however overall combined eight PA data reveals a reliable precision (8.04%).

Table 9: Mean CO2 (Mg/ha) stock with Confidence Level (all land cover classes)

ΡΑ	Mean, CO2 (Mg/ha)	Std. Dev	n	SE	CL (90%)
KhNP	298.35	180.39	9	99.45	138.93
LNP	323.83	242.59	31	58.16	76.48
SNP	265.80	161.68	20	59.43	79.05
RKWS	370.69	198.34	63	46.70	60.53
MNP	234.79	127.00	55	31.66	41.03
KNP	258.47	241.64	61	33.09	42.89
CWS	146.40	121.67	111	13.90	17.93
HNP	52.83	85.91	27	10.17	13.37
Mean	232.76	195.80	377	11.99	15.46

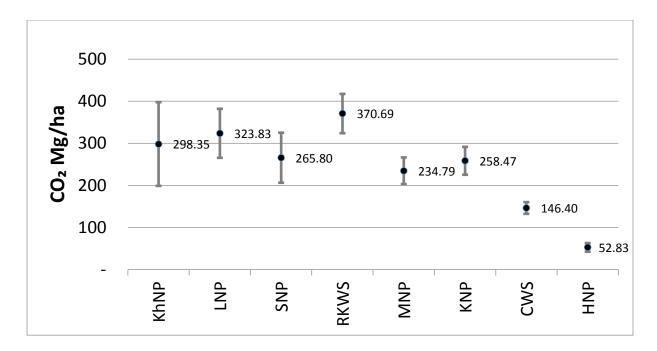
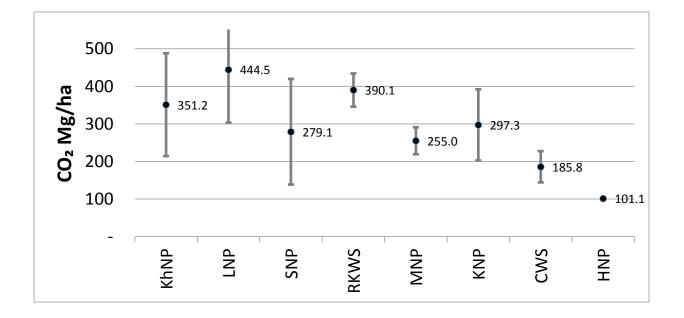



Figure 7. Mean CO2 stocks for eight PAs with error bars showing 90% confidence intervals.

PA	Mean CO2 (Mg/ha)	Std.Dev	n	SE	CL (90%)
KhNP	351.2	166.6	6	68.0	137.05
LNP	444.5	272.4	12	78.6	141.20
SNP	279.1	147.6	5	66.0	140.69
RKWS	390.1	178.4	46	26.3	44.18
MNP	255.0	115.7	30	21.1	35.9
KNP	297.3	223.7	17	54.3	94.72
CWS	185.8	110.8	21	24.2	41.70
HNP	101.1		1		

Table 10: Mean CO2 (Mg/ha) stock in forests with Confidence Level (forests only)

Emission Factors from Deforestation

The development of emission factors for land use change is a fundamental component of completing any regional or national GHG accounting. Emission factors are calculated as the difference between the forest CO_2 stocks before land use change and after land use change (i.e. post-deforestation). Emissions occur when the conversion results in a decrease in carbon stocks. In contrast, sequestration can occur when a unit of land is converted to higher carbon stocks, for example when degraded land is allowed to regrow into forest, or an agricultural area is planted with trees.

Table 11: Deforestation trends in eight PAs

ΡΑ	Land cover change	Total Forests in 2001	Total area of change (2001- 2012)	Annua I area chang e	Rate of Deforestatio n	Emission Factor	Baseline Annual Emissions
	Forest to:	ha	ha	ha/yr	%	Mg CO₂ ha¹	Mg CO ₂ yr-1
CWS	Settlement		20.8	1.73	0.16%	325	563.33
CWS	Agriculture		8.5	0.71	0.07%	319	225.96
CWS	Total	1,067	29.30	2.44	0.23%	322	786.22
HNP	Bare soil		2.8	0.23	0.13%	325	75.83
HNP	Settlement		2.3	0.19	0.11%	325	62.29
HNP	Agriculture		2	0.17	0.09%	319	53.17
HNP	Total	182	7.1	0.59	0.33%	323	191.11
KhNP		481		-			-
KNP	Agriculture		4.1	0.34	0.01%	319	108.99
KNP	Settlement		3	0.25	0.004%	325	81.25
KNP	Total	5,823	7.1	0.59	0.01%	322	190.52
LNP	Agriculture		7.6	0.63	0.03%	319	202.03
LNP	Settlements		2.8	0.23	0.01%	325	75.83
LNP	Total	2,149	10.4	0.87	0.04%	322	279.07
MNP	Agriculture		110.2	9.18	0.38%	241	2,213.18
MNP	Settlements		47.4	3.95	0.17%	247	975.65
MNP	Total	2,389	157.6	13.13	0.55%	244	3,204.53
RKWS	Agriculture		0.4	0.03	0.0006%	319	10.63
RKWS	Total	5,755	0.4	0.03	0.0000	319	10.63
SNP		229		-			-

ΡΑ	Total Forests in 2001	Total area of change (2001-2012)	Annual area change	Rate of Deforestation	Emission Factor	Baseline Annual Emissions
	ha	ha	ha/yr	%	Mg CO₂ ha¹	Mg CO ₂ yr- ¹
CWS	1,067	169	14.08	1.32%	258	3,633.50
HNP	182	30.6	2.55	1.40%	258	657.90
KhNP	481	2.5	0.21	0.04%	258	53.75
KNP	5,823	94.6	7.88	0.14%	258	2,033.90
LNP	2,149		-	-		-
MNP	2,389		-	-		-
RKWS	5,755		-	-		-
SNP	229	5	0.42	0.18%	258	107.50

Table 13. Degradation due to human interference (cutting of trees, stumps).

PA	Forests (ha)	No. of	Emissions from	Percent of	Total emissions from
	in 2014	stumps	extraction of trees	total forest	extraction of trees
		per ha	CO2 Mg/ha)	CO₂ stocks	CO2 Mg
CWS	507	25.9	2.51	1.59%	1,272
KhNP	479	14.8	26.44	9.11%	12,663
KNP	3,786	65.1	48.89	17.04%	185,085
LNP	1,911	30.5	6.43	1.67%	12,281
RKWS	4,782	19.0	19.00	5.02%	90,858
SNP	952	39.5	18.02	7.72%	17,154
MNP	2,232	19.1	4.03	1.68%	9,004
ALL sites	14,649	30.6	17.90	6.26%	328,317

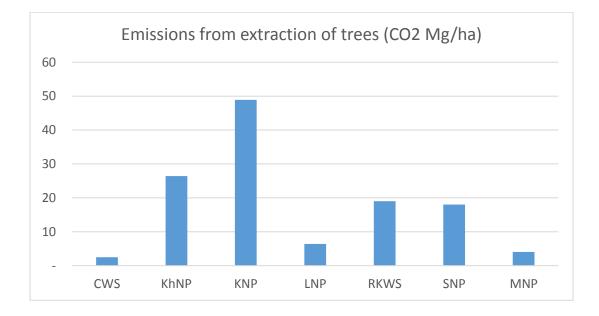
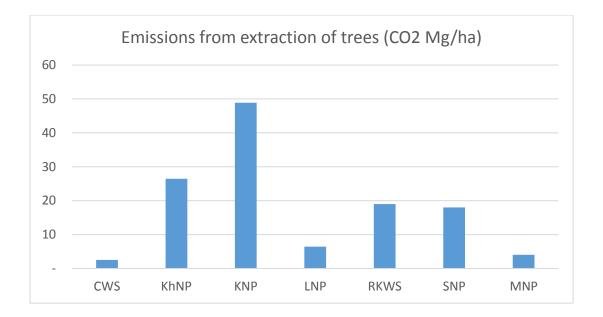


Table11 shows the emission factors developed from the CREL inventory, including mangroves from the 2010 Sundarbans inventory. Red numbers represent an emission in Mg CO_2 ha⁻¹, and green numbers represent sequestration in Mg CO_2 ha⁻¹.

Table 11: Deforestation trends in eight PAs


ΡΑ	Land cover change	Total Forests in 2001	Total area of change (2001- 2012)	Annua I area chang e	Rate of Deforestatio n	Emission Factor	Baseline Annual Emissions
	Forest to:	ha	ha	ha/yr	%	Mg CO₂ ha¹	Mg CO ₂ yr ⁻ 1
CWS	Settlement		20.8	1.73	0.16%	325	563.33
CWS	Agriculture		8.5	0.71	0.07%	319	225.96
CWS	Total	1,067	29.30	2.44	0.23%	322	786.22
HNP	Bare soil		2.8	0.23	0.13%	325	75.83
HNP	Settlement		2.3	0.19	0.11%	325	62.29
HNP	Agriculture		2	0.17	0.09%	319	53.17
HNP	Total	182	7.1	0.59	0.33%	323	191.11
KhNP		481		-			-
KNP	Agriculture		4.1	0.34	0.01%	319	108.99
KNP	Settlement		3	0.25	0.004%	325	81.25
KNP	Total	5,823	7.1	0.59	0.01%	322	190.52
LNP	Agriculture		7.6	0.63	0.03%	319	202.03
LNP	Settlements		2.8	0.23	0.01%	325	75.83
LNP	Total	2,149	10.4	0.87	0.04%	322	279.07
MNP	Agriculture		110.2	9.18	0.38%	241	2,213.18
MNP	Settlements		47.4	3.95	0.17%	247	975.65
MNP	Total	2,389	157.6	13.13	0.55%	244	3,204.53
RKWS	Agriculture		0.4	0.03	0.0006%	319	10.63
RKWS	Total	5,755	0.4	0.03	0.0000	319	10.63
SNP		229		-			-

РА	Total Forests in 2001	Total area of change (2001-2012)	Annual area change	Rate of Deforestation	Emission Factor	Baseline Annual Emissions
	ha	ha	ha/yr	%	Mg CO₂ ha¹	Mg CO₂ yr⁻¹
CWS	1,067	169	14.08	1.32%	258	3,633.50
HNP	182	30.6	2.55	1.40%	258	657.90
KhNP	481	2.5	0.21	0.04%	258	53.75
KNP	5,823	94.6	7.88	0.14%	258	2,033.90
LNP	2,149		-	-		-
MNP	2,389		-	-		-
RKWS	5,755		-	-		
SNP	229	5	0.42	0.18%	258	107.50

Table 12: Forest degradation by change of land cover class (forest to degraded forests)

Table 13. Degradation due to human interference (cutting of trees, stumps).

PA	Forests (ha)	No. of	Emissions from	Percent of	Total emissions from
	in 2014	stumps	extraction of trees	total forest	extraction of trees
		per ha	CO2 Mg/ha)	CO₂ stocks	CO2 Mg
CWS	507	25.9	2.51	1.59%	1,272
KhNP	479	14.8	26.44	9.11%	12,663
KNP	3,786	65.1	48.89	17.04%	185,085
LNP	1,911	30.5	6.43	1.67%	12,281
RKWS	4,782	19.0	19.00	5.02%	90,858
SNP	952	39.5	18.02	7.72%	17,154
MNP	2,232	19.1	4.03	1.68%	9,004
ALL sites	14,649	30.6	17.90	6.26%	328,317

Table1.Emission	factor f	table,	units a	are i	n Mg	CO ₂ h	a-1
-----------------	----------	--------	---------	-------	------	-------------------	-----

						Conve	erted to:			
		Mangr ove	Hill Forest	Sal Forest	Plantat ion	Rubb er	Degraded forest (shrub)	Tea Garden	Agricult ure	Bare land
	Mangrove	N/A	N/A	N/A	265.9	287. 0	430.5	460.5	491.6	497.4
	Hill Forest	N/A	N/A	N/A	93.4	114. 4	257.9	288.0	319.1	324.8
mo	Sal Forest	N/A	N/A	N/A	15.6	36.6	180.1	210.2	241.3	247.1
ed fi	Plantation	N/A	N/A	N/A	N/A	21.0	164.6	194.6	225.7	231.5
/ert	Rubber	N/A	N/A	N/A	N/A	N/A	143.5	173.6	204.7	210.4
Converted from:	Degraded forest (shrub)	N/A	(257.9)	(180.1)	(164.6)	(143. 5)	N/A	30.0	61.1	66.9
	Tea Garden	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31.1	36.9
	Agriculture	N/A	(319.1)	(241.3)	(225.7)	(204. 7)	N/A	(31.1)	N/A	5.8

Example of how to use Table 13: if 1 hectare of hill forest is converted to degraded forest there is an emission of 257.9 Mg CO_2 . If ten hectares of hill forest was converted to degraded forest then the emissions are 2,579 Mg CO_2 . If 1 ha of Sal forest is converted to agriculture there is an emission of 241 Mg CO_2 .

Forest Degradation

In Bangladesh the term "degraded forest" has a few definitions. Based on the CREL inventory, the most common reference to degraded forest are areas with very sparse tree cover, dominated by shrubs and other primary growth bamboo, and herbs. These areas are maintained in this state of degradation by continuous extraction from local and immigrant agents. By most accounts, degradation pressure is so severe that trees are often cut as saplings for garden poles and fences. This is the same with cane and bamboo. It is uncommon for a tree to grow above 5cm DBH, and when it does it is likely to be cut for fuel wood or timber. It is so uncommon for trees to grow above 5cm that stumps are not common, indicating

that these areas have been degraded for a long time (depending on stump decomposition rate). Because these degraded forests are quite distinct from canopy forests they can be mapped using remote sensing and the emissions that result from forest going to shrub land degraded forest can be calculated as the difference in CO_2 , as was done above in the emissions factor table (Table 1). It must be noted that these areas often do not meet the forest definition. They are termed degraded forest shrub lands because they are under the Forest Department jurisdiction and if managed could return to forest. However, under a REDD+ program these areas would need to be defined appropriately, because if they do not meet a forest definition they will need to be managed and accounted for very differently from areas maintaining >10% canopy cover. For example, if they do not meet a forest definition they do not need to be monitored for deforestation, and they are available for reforestation.

However, degradation does not always result in the loss of canopy cover, but occurs commonly under the canopy through the cutting and extraction of small to medium sized trees. It is uncommon for large trees to be extracted from existing forest areas, as it is illegal and the work requires considerable time, chainsaws, and other equipment that make the likelihood of confiscation high². Therefore, existing forests in some of the CREL PAs is often maintained by the presence of large canopy trees, but understory trees are under high pressure from local agents to be extracted for fuel and construction. To quantify this type of degradation, stumps were measured in each of the CREL PAs. To estimate the amount of biomass extracted, a relationship was developed correlating stump basal diameter to tree DBH (Figure 7). By estimating the DBH we can calculate the biomass, therefore carbon (multiply by 0.5), and CO_2 (multiply carbon by 3.67 or (44/12)).

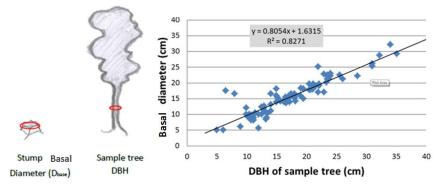


Figure 7. Example of the field methods and quantification for estimating the biomass of trees extracted based on the presence of stumps.

If we know the biomass of the stump, and we know the biomass of the tree that has been extracted, the difference is the total biomass/carbon/ CO_2 extracted. In this way the total biomass extracted can be calculated from inventorying the stumps, resulting in an estimation of forest degradation.

Biomass extracted (Mg ha¹) = Biomass of sample tree (Mg ha¹) – Biomass stump (Mg ha¹)

The results for CO_2 emissions from forest degradation that does not result in a shrub dominated environment are presented in Figure 8 and Table 2. It must be noted that these results are limited for accurate accounting of GHG emissions because:1) this type of degradation is highly variable across the forest and we can't get accurate areas of different degradation intensities; 2) stumps can remain present for many years so there is no information on the timing of the event; and 3) it is unknown the fate of the wood products (are they burned for fuel wood or used for construction?).

For this work we are assuming all wood extracted from the forest was burnt. There were no results for HNP because there was only one plot in forest, and that plot had no stumps (Figure 8). CSW, LNP, and MNP all had average emission of 2 Mg CO_2 ha¹, 6 Mg CO_2 ha¹ and 4 Mg CO_2 ha¹. The relatively low forest degradation may be a result of: 1) effective protection of the forest, 2) lower threat based on things like

²From discussions with local experts, the extraction of large timber trees does still occur in cases when local officials that are above the law decide to or are pressured to cut timber trees.

community activities or lower population, or 3) the area was degraded long ago and no stumps remain. SNP, RKWS and KhNP had much higher average emission from 18-27 Mg CO_2 ha¹, with some areas having more than 100-150 Mg CO_2 ha¹ extracted, which is 30-40% of the total forest CO_2 stocks. KNP was the outlier with extremely high emission that were on average 49 Mg CO_2 ha¹ (17% of the total forest CO_2 stocks), with higher areas at over 200 Mg CO_2 ha¹ (>50% of forest CO_2 stocks).

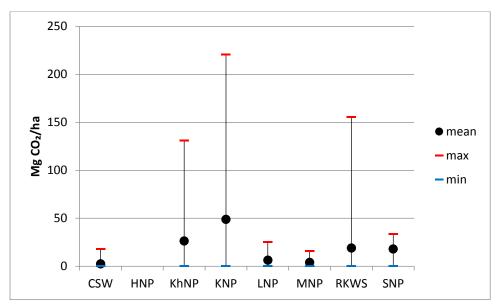


Figure 8.Results for emissions from forest degradation (Mg CO_2 ha¹) from each CREL PA based on quantification of stumps

The average emission per hectare from forest degradation for each PA is presented in Table 2. By multiplying the average emissions per hectare by the total area of forest an estimate of total emission from forest degradation is presented (Table 2). While these estimates can prove useful for estimating impacts from forest degradation in different CREL PAs, the results are not applicable for national GHG accounting because 1) this type of degradation can be highly variable from site to site and cannot be mapped to estimate actual area of degradation; and 2) there is no estimate of time relating to this degradation as stumps may remain present for years after cutting (depending on stump decomposition rates).

Table 2: Results for emissions from forest degradation (Mg CO_2 ha¹) from each CREL PA based on quantification of stumps

Name of PA	Area of forests (ha)	Ave. No. stumps per ha	Ave. wood biomass extracted (Mg C/ha)	Ave. emissions from extraction of trees (Mg CO2/ha)	Percent of total forest CO ₂ stocks	Total emissions from extraction of trees (Mg CO ₂)
CSW	507	26	0.91	2.51	1.6%	1,272
KhNP	479	15	4.74	26.44	9.1%	12,663
KNP	3,786	65	17.81	48.89	17.0%	185,085
LNP	1,911	30	2.35	6.43	1.7%	12,281
RKWS	5,613	19	6.92	19.00	5.0%	106,639
SNP	222	40	6.56	18.02	7.7%	3,994
MNP	2,232	19	1.34	4.03	1.7%	9,004
ALL sites	14,749	31	5.80	17.90	6.3%	330,938

The results in Table 2can be an indication of forests that are under high threat and therefore where CREL activities could have the biggest impact. Figure 8 indicates KNP, KhNP and RKWS are PAs where CREL activities could have the biggest impact, because of high emissions from forest degradation (forests

remaining as forests). The next step is to identify areas within the PAs where forest degradation (i.e. tree extraction) is most prevalent. Figure 9 shows a density map for plots with high to low emissions from forest degradation related to stumps in PAs. The emissions from high to low are relative for each PA, with high emission (red) in Lawachara being equivalent to 25Mg CO_2 ha⁻¹ and in Kaptai 220.8Mg CO_2 ha⁻¹. These density maps could provide important information for where threat of forest degradation in highest and therefore where interventions could be most effective.

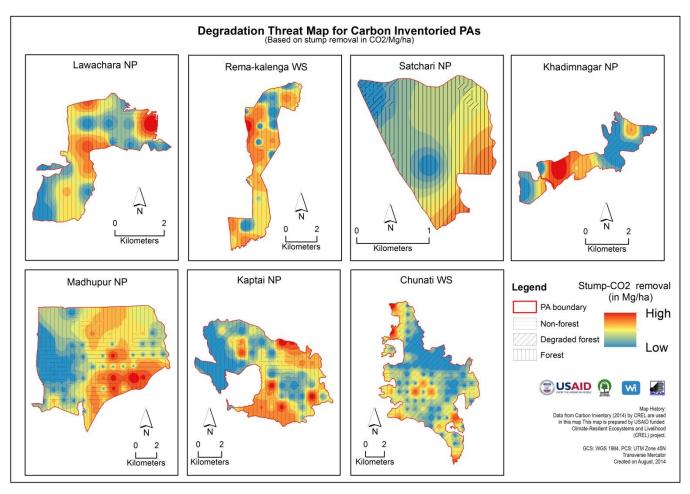


Figure 9: Threat of degradation, PAs with high threat shown on the top row, and low threat in bottom row. Within each PA threat is mapped based on plots with high (red) to low (blue) CO_2 extracted.

GHG Emissions and Biophysical Condition

By combining the results from the area of change (hectares)with the emissions factors and biophysical factors historical baselines can be established for each of the CREL PAs. If we assume that the historical rate of change is the baseline rate of change that would have continued into the future in the absence of the CREL project, then the annual area of change or rate is the baseline that the CREL project should measure its success against. For example, if the baseline rate of change in CSW is 16.5 ha per year resulting in 4,422Mg CO₂ yr⁻¹(see Table 3) and during the life of the CREL project the rate drops to 14ha per year with a corresponding decrease in CO₂ emissions then the CREL project may be able to say that it has been successful reducing GHG emission from deforestation by around 15%. To monitor any changes in the deforestation rate there are two options for CREL, 1) wait for the Hansen dataset to be updated (this is expected annually starting in 2015), 2) use the USAID AFOLU Carbon Calculator Tool to estimate using a subjective question and answer approach.

Table3 shows the results for baseline annual emissions for each of the CREL PAs. The total baseline annual emissions for each PA are what CREL should use to monitor is success against.

ΡΑ	Land cover change	Total area of change (2001- 2012)	Annual area change	Rate of Deforestation	Emission Factor	Baseline Annual Emissions
	Forest to:	ha	ha/yr	%	Mg CO₂ ha¹	Mg CO₂ yr⁻¹
CSW	Degraded Forest Shrubland*	169.0	14.1	1.32%	258	3,632
CSW	Settlement	20.8	1.7	0.16%	325	564
CSW	Agriculture	8.5	0.7	0.07%	319	227
CSW	Total	198.3	16.5	1.55%		4,422
HNP	Degraded Forest Shrub land*	30.6	2.6	1.40%	258	658
HNP	Bare soil	2.8	0.2	0.13%	325	75
HNP	Settlement	2.3	0.2	0.10%	325	61
HNP	Agriculture	2.0	0.2	0.09%	319	52
HNP	Total	37.6	3.1	1.73%		847
KhNP	Degraded Forest Shrub land*	2.5	0.2	0.04%	258	54
KhNP	Total	2.5	0.2	0.04%		54
KNP	Degraded Forest Shrub land*	94.6	7.9	0.21%	258	2,033
KNP	Agriculture	4.1	0.3	0.01%	319	109
KNP	Settlement	3.0	0.3	0.01%	325	81
KNP	Total	102	8	0		2,224
LNP	Agriculture	7.6	0.6	0.27%	319	203
LNP	Settlements	2.8	0.2	0.10%	325	76
LNP	Total	10.4	0.9	0.37%		278
MNP	Agriculture	110.2	9.2	0.38%	241	2,215
MNP	Settlements	47.4	4.0	0.17%	247	977
MNP	Total	157.6	13.1	0.55%		3,192
RKWS	Agriculture	0.4	0.0	0.00%	319	11
RKWS	Total	0.4	0.0	0.00%		11
SNP	Degraded Forest Shrub land*	5.0	0.4	0.18%	258	107
SNP	Total	5.0	0.4	0.18%		107

Table3:Results for baseline annual emissions for eight CREL PA

* In this study the shrub land degraded forest is a distinct land cover type that is dominated by shrubs. In most cases these lands do not meet the forest definition (>10% canopy cover over 0.5ha), however are called "degraded forest shrub lands" because they are forest department lands and eligible for reforestation. This is in contrast to other areas

where there is forest (i.e. it meets the forest definition) and it has been degraded, these land s are called "degraded forest." This distinction would be critical under a REDD+ system as these two land cover types would be monitored and reported in very different ways (See Section 6.3.2)

Discussions

This report provides the results from the CREL forest inventory and land cover mapping in 2014. The analyses of the results also provide important recommendations and contributions to Bangladesh's National REDD+ development.

The forest inventories resulted in carbon stocks estimates for Sal forest and Hill forest. Data from the 2009 Sundarbans Inventory^[2] was used to establish Mangrove carbon stocks. The analysis of forest degradation suggests that degraded forests are a significant cause of GHG emissions and loss of quality biophysical condition for forests in Bangladesh. As part of the inventory CREL also measured some common non-forest land cover types in Bangladesh, enabling preliminary *emission factors* that could be the basis for further national scale inventory.

Integrated with the forest inventory CREL developed a unique set of metrics for assessing the biophysical condition of forest and other land cover types, including tree recruitment, species richness, and general structure related to live biomass, dead biomass and soil organic matter that can give an indication of forest health and resiliency.

By combining the data for GHG emissions and changes in forest biophysical condition with baseline land cover change maps, the CREL project is able to establish baselines for eight PAs. The methods and results provide important contributions to Bangladesh's R-PP and National REDD+ development.

Some important findings from this report are:

- 1) Estimated carbon stocks for forest and non-forest lands that enable a preliminary estimate of emission factors for deforestation in Bangladesh.
- Estimated carbon stocks and emissions from the conversion of forest to degraded shrubland forest. This provides the first estimation of the impact of forest degradation in Bangladesh that we are aware of.
- A unique assessment of the relative impact and emission from illegal tree cutting in eight forest protected areas based on an inventory of tree stumps. This helps to quantify the threat and impact of tree cutting on exiting protected forests.
- 4) Degradation appears to be the most significant threat to forest GHG emission and loss of biophysical condition.
- 5) Degraded forest needs to be mapped with higher degree of accuracy for a REDD+ program in Bangladesh. From our experience higher resolution data is not the best solution and it is advised to look at other data sources like Radar.
- 6) Plantation forest is also an important component of Bangladesh's forests. These can be very hard to map with RS therefore manual digitization should be considered as a viable option.
- 7) Wetlands are an important aspect of the Bangladesh landscape and there are significant drivers that are converting wetlands, therefore any national GHG accounting should include wetlands. This would require conducting wetland inventories and mapping wetlands so that wetland conversion can be monitored.

From analyzed data, it was observed that the total CO2 stock varied from 120 to 348 (mg/ha) with exceptionally low only 39 Mg/ha at Khadimnagar National Park. The highest was observed at Rema-Kalenga Wildlife Sanctuary (Table 6). The number of seedlings varied from 140 to 702 with exceptionally high at Rema-Kalenga (1582/ha) and Himchari (2834/ha). Similarly, the number of saplings varied from 95 to 771 per hectare with exceptionally high at Rema-Kalenga (771/ha).

^[1] Standard Operating Procedures (SOP) for Forest Carbon Inventory, Bangladesh (2014)

^[2] Forest Carbon inventory in the Sundarbans RF (2009)

The numbers of stumps recorded during data collection by the field team members was counted. The DBH of the tree with same base diameter were estimated by previous generated relationships followed by estimation of the volume and then carbon content. The number of stumps, live trees along with estimated carbon is given in Table 10.

Table 10: Results for emissions from forest degradation (Mg CO_2 ha¹) from each CREL PA based on quantification of stumps

	Area of forest (ha)	Ave. No. stumps per ha	Ave. wood biomass extracted (t C/ha)	Ave. emissions from extraction of trees (t CO2/ha)	Percent of total forest CO₂ stocks	Total emissions from extraction of trees
CWS	507	26	0.91	2.51	1.6%	1,272
KhNP	479	15	4.74	26.44	9.1%	12,663
KNP	3,786	65	17.81	48.89	17.0%	185,085
LNP	1,911	30	2.35	6.43	1.7%	12,281
RKWS	4,782	19	6.92	19.00	5.0%	90,858
SNP	952	40	6.56	18.02	7.7%	17,154
MNP	2,232	19	1.34	4.03	1.7%	9,004
ALL sites	14,649	31	5.80	17.90	6.3%	328,317

The number of species and plant counts were done and presented in Appendix-5. The summary data is given in Table 11.

	Number of	Total Number		
PAs	Species	of trees	Number of trees/ha	
CWS	32	64	5.	.77
HNP	11	24	8.	28
KhNP	10	32	35.	.56
KNP	61	308	54.	.04
LNP	75	230	74.	.19
MNP	38	88	14.	.92
RKWS	90	498	81.	.64
SNP	34	92	46.	.00

Data archives: Lists of spreadsheets submitted along with the report.

Khadimnagar National Park (KhNP), Lawachara National Park (LNP), Satchari National Park (SNP), Rema-Kalenga Wildlife Sanctuary (RKWS), Modhupur National Park (MNP), Kaptai National Park (KNP), Chunati Wildlife Sanctuary (CWS) and Himchari National park (HNP). Archive: C:\Users\Ruhul\Dropbox\CREL_Bangladesh\ CREL_Forest_Inventory2014\Latif Carbon Inventory Files\C Inventory 2014 Results.

After the compilation of the different parameters of the carbon pools individually, the total carbon production were summarized plot and Protected area wise. We have produced different Excel Spread and work sheets (Table5). Then Land use, pools and PA wise were analyzed (Table 5). PA, land use and plot wise data were also summarized and are given in Appendices 4-10) for ready reference.

References

- Curtis, S. J. 1924. Management plan for Sundarbans.
- Forestal 1960. *First detailed inventory of Sundarbans in 1960*. Forestry and Engineering International Limited of Vancouver, Canada
- Forestal 1964. Chittagong Hill Tracts Forest Inventory Survey 1961-1963, Kassalong and Rankhiang Reserved Forests. Forestry and Engineering International Limited. Vancouver, Canada. May 1964. (Project No F334 under Colombo Plan, Pakistan, Canada).

Hammermaster, E.T. 1981. Village Forest Inventory of Bangladesh: Inventory Results. Field Document No 5. FAO of United Nations. UNDP/FAO Project BGD/78/020. pp 59

Latif, M. A. and Islam, M. N. 1984. Tree Volume Tables for *Syzygium grande* (Wt.) wild.(dhakijam). Bulletin No. 2. Inventory Division, Bangladesh Forest Research Institute, Chittagong, p.25-57

Latif, M.A. and Islam, M. N. 1984. Tree volume tables for Artocarpuschaplasha (chapalish).

Bulletin No. 2. Inventory Division, Bangladesh Forest Research Institute, Chittagong, 58-92.

- Latif, M. A. Islam, M. N. and Choudhury, J. H. 1984. Tree volume tables for *Gmelinaarborea*Roxb (gamar). Bulletin No. 2. Inventory Division, Bangladesh Forest Research Institute, Chittagong, p.93-121.
- Latif, M. A. and Islam, M. N. 1984, Tree volume tables for *Dipterocarpusturbinatus*Gaertn. F. (teligarjan). Bulletin No. 2. Inventory Division, Bangladesh Forest Research Institute, Chittagong, p.122-150
- Chaffy, D.R.; Miller, F.R. and J.H Sandom. 1985. A Forest Inventory of the Sundarbans,
- Bangladesh. Overseas Development Administration; Land Resources Development Centre;

Tolworth Tower, Surbiton, Surrey, England KT6 7DY. pp 196.

- Milde. R. Md. Shaheduzzaman and J. A. Chowdhury.1985. The Kassalong and Rankhiang Reserved Forests in the Chittagong Hill Tracts, FAO. FAO/UNDP/BGD/79/017, Bangladesh, Sept.1985.
- Latif, M. A; Islam, M. N; and Islam, S. S. 1985. Tree volume tables for teak (*Tectonagrandis*) in Bangladesh. Bulletin No. 5, Inventory Division, Bangladesh Forest Research Institute, Chittagong.17pp.
- Revilla, J.A.V. 1996. Progress report for the second mission of the Forest Inventory Specialist, Mandala Agricultural Development Corporation, Dhaka Bangladesh, 150pp

Forest Department 1996. Inventory of Sundarbans. FD, Government of Bangladesh

- Latif, M. A; Islam, S. S. and Davidson, J. 1986. Metric volume tables for some tree species found in the natural forests of Bangladesh. Bulletin No. 6, Inventory Division, Bangladesh Forest ResearchInstitute, Chittagong, 79pp.
- Drigo, R; Latif, M. A; Chowdhury, J. A. and Shaheduzzaman, M. 1987. The maturing mangrove plantations of the coastal afforestation project. Field Document No. 2, FAO/ UNDP Project BGD/85/085.
- FAO 2006. *Global forest resources assessment 2005*. FAO Forestry Paper No. 147. FAO Rome (also available at http://www.fao.org/forestry/site/41555/en/).
- Das, S; Rahman, M. F; Reza, N. A. and Latif, M. A. 1992. Tree Volume Tables for Sal (*Shorearobusta*Gartn. f,) in the plantations of Bangladesh. Bulletin No. 7, Forest Inventory Division. BangladeshForest Research Institute, Chittagong, 11 p.
- Latif, M. A.; Habib, M. A. and Das, S. 1993. Tree volume tables for *Acacia mangium* in the plantations of Bangladesh. Bangladesh Journal of Forest Science. 22 (1&2): 23-29.
- M. A. Latif, S. Das and M. F. Rahman. 1995. Volume tables for *Acacia auriculiformis, Cassia siamea* and *Pinuscaribaea* in Bangladesh. Bangladesh Journal of Forest Science. 24 (2): 22-30.

- Satter, M. A.: Bhattacharjee, D. K. And Kabir, M. F. 1999: Physicaland mechanical properties and uses of timbers of Bangladesh, Bangladesh Forest Research Institute, Chittagong, Government of Bangladesh, 57pp.
- M. A. Latif, Islam, M. S. And Islam, S. M. Z. 2000. Volumetables for sissoo, koroi, akashmoni, babla, mahoganyand rain tree planted on embankments and road sides in the coastal areas of Bangladesh. Bulletin No. 9. Forest Inventory Division. Bangladesh Forest Research Institute, P. O. Box-273, Chittagong - 4000, Bangladesh. 24pp.
- M. A. Latif, Islam, M. S. And Islam, S. M. Z. 1999. Volumetables for sissoo, koroi, mahogany, eucalypts and bokain planted on croplands in the north and western parts of Bangladesh. Village and Farm Forestry Program, Swiss Agency for Development and Cooperation, Dhaka, Bangladesh. (Mimeograph).
- Rahman, M. H., Das, S. and Latif, M. A. 2001. Volume tables for koroi (Albiziaprocera) and Arjun (Terminalia arjuna) trees planted in the central part of Bangladesh. Bangladesh Journal of Forestry
- Latif, M.A and Islam, S. M. Z. 2004. Timber and fuelwood volume tables for Acacia auriculiformis, A. mangium, Eucalyptus camaldulensis and Dalberziasissoo in plantations in Bangladesh. A joint work of Forestry Sector Project, Bangladesh Forest Department and Bangladesh Forest Research Institute, Chittagong, Bangladesh. P38. (Mimeograph)
- IPAC, 2010. Carbon Forest Inventory Manual. Integrated Protected Area Co-management Project, Dhaka
- Walker, SM, Pearson, TRH, Casarim, FM, N Haris, S. Petrova, A, Grais, E, Swails, M, Netzer, KM Goslee and S, Brown, 2012. Standard Operating Procedures for Terrestrial Carbon Measurement Version 2012. Winrock International

Appendix I: Field Forms

Form 1 CREL Forest Carbon Inventory 2014: Plot Setup and Description

Name of I	PA:	P	lotID:_		Ran	ge:			Beat:		_Blo	ck:	
Mouza: _			Uı	nion:_				Upaz	ila				
Team Lea	ader:_				Data	a recorde	ed by	:	# peo	ple in te	am: _		_
GPS in D	D MM	I SS.ss:	Lat (N	۷)		Loi	ng. (l	Ξ)	GPS A	ccuracy	/ (±m))	
Plot locati	ion												
Entry Wa	ypoin	t/neares	t landir	ng:									
Date:	_/	/	Star	t Tim	e:	End	l time	e: T	otal Time:				
Land use	categ	gory (ciro	cle one):									
Fores t	•	rest	Shru b		ntatio prest	Village forest		/	Permanen t	Cultiva	-	Tea garde	Wet -land
			land				dev	veloped	Agriculture	n		n	
Topograp	ohy (c	circle one	e):										
Depr	ressio	on		Flat		L	.ow h	ills	High hi	lls		Valley	
Disturbar	nce E	vidence	(circle	one):									
No		Fores		t timb		Encroac	h (Grazing	Fuel wood		grass		her
disturba	nce	t fire	re	mova		ment			removal	rem	noval	(spe	ecify)
Storm Cy	/clone	e damag	e:					Diseas	se:				
No evidenc		Low (<30%)				gh 0%)	e\	No /idence	Low (<30%)		lium 70%		igh '0%)
Domina	nt wi	ldlife (d			dences	s notice	d in t	the plot):	 			I	
Red liste	əd Flo	ora and I	-auna:										
Invasive	spec	cies:											

Notes:

Form 2 CREL Forest Carbon Inventory 2014: Measurement of Seedlings, Saplings, Trees and Palms

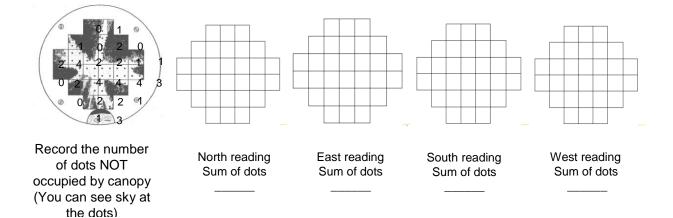
 Name of PA:______
 Plot ID:______Slope (%): ______
 Photo

 Number(s):N______E____
 S______W_____

Seedlings Plot Dimension radius 2.0 m; Saplings Plot Dimension radius 2.0 m: # of Seedlings: _____ # of Saplings: ____Dominant Species Name ______

Live Tree Measurements: Nested Plots

		. NOSIC	u	1013			_				
Plot ra Tree o	adius: small <u>, 4.0m</u> diameter: small, <u>>5</u>	5.0cm			ius: medium <u>, 10.0</u> ameter: medium, <u>n</u>	<u>)m</u>		Plot radius: medium <u>, 17.84m</u> Tree diameter: medium, <u>≥50.0cm</u>			
Tree #	Species	DB H (cm)		Tree #	Species	DBH (cm)		Tree #	Species	DBH (cm)	


	Co-dominant Trees and Palms where height is measured											
Tree #	Species	Height	Clinor ang		Eye to tree	Equipment Used						
#		(m)	+	-	(m)							

Form 3: CREL Forest Carbon Inventory 2014: Measurement of Stumps and Canopy Cover

Name of	PA:		Plot ID #:		-	
Form 3	A: CREL Ca	arbon Inventory: S	tumps from human de	egradation		
Stum p ID#	Base diamete r (cm)	Does the cut tree result in any gap in the canopy	If YES comment on if the gap is small, medium, or large	tree of sim	ole Tree DBH ilar or same s ilar base dian	pecies with neter
		(YES/NO)		Species	DBH (cm)	Base dia (cm)

Form 3B Canopy cover

The spherical densiometer consists of 24 ¼" squares engraved onto a concave mirror. Each square of the grid must be subdivided mentally into 4 smaller squares and represented by an imaginary dot in the center of each of the smaller squares (see Example). Four canopy cover readings should be taken, each 10m from plot center at due North, East, South, and West. Count the number of dots NOT occupied by canopy (where you can see sky at that dot). Record this number on the datasheet.

Form 4: CREL Forest Carbon Inventory 2014: Standing Dead & Lying Wood Measurements and Soil Samples:

Form 4A: Standing Dead Wood Measurements

Name of PA: ______Plot ID #:_____

Diameter at	DBH at	Diameter at top	Height (m) (if	Height Measurement						
base, at 0.15 m; (cm)	1.3 m; (cm)	(cm) (if measured	measured directly)		ometer angle	Distance from eye to tree	Height of eye (m)			
		directly)		+	-	(m)	• • • •			

Form 4B: L	ying Dead Wood Mea	surements
	er than 10 cm diameter) gth (m) =25 m	
Diameter (cm)	Density Class (S/I/R)	Hollow Diameter (cm)

Form 4C: Soil Soil type (circle): clay, sandy-clay, loam,
Sandy-loam, silty-clay, silty-loam;
Other soil type
Soil % C
Sample ID #
Sample method:
Sampledepth (cm):
Bulk density
Sample ID#
Sample method:
Sample volume (cm ³):
Sampledepth (cm):
Sample ID#
Sample method:
Sample volume (cm ³):
Sample depth (cm):

S=Solid I=Intermediate R=Rotten

Form 5: CREL Forest Carbon Inventory 2014: Non-Tree Woody Vegetation: Bamboos

Name of PA:_____ Plot ID:_____

Plot radius 2, 4 or 10 m will depend on intensity of occurrence

Clump	Species	Average	Height	A	verage Heigh	Number of	Plot		
#	Small,	DBH (cm)	(m)		r angle (%)	Distance	Height	Culms/Stems	radius
	medium and	of the culm		+	-	from eye to	of eye	in the clump	(m)
	large					tree (m)	(m)	(n)	

Bamboo: Small (diameter< 4cm), Med. (diameter 4-8cm) and Large (diameter>8cm)

Form 6: CREL Forest Carbon Inventory 2014: destructive harvest samples & sub-samples

(Seedlings, Sapling, Bamboo, Cane, Palm, Shrub, litter and herbaceous vegetation)

Name of the PA:

Plot ID.:

		DBH	Height		Sample		Sub-sample		
Sampl e ID	Species	(cm)	(m)	Weight of bag (g)	Weight of bag+ material (g)	Weight of sample (g)	Weigh t of bag (g)	Weight of bag+ material (g)	Weight of sample (g)
	Bamboo: Small (dia< 4cm)					101	(0)	(6)	(0)
	Bamboo: Med. (dia 4- 8cm)								
	Bamboo: Large (dia>8cm)								
	Litter 1	-	-						
	Litter 2	-	-						
	Litter 3	-	-						
	Litter 4	-	-						
	Grass & Herbaceous 1	-	-						
	Grass & Herbaceous 2	-	-						
	Grass & Herbaceous 3	-	-						
	Grass & Herbaceous 4	-	-						
	Shrubs	-							
	Seedlings (2 numbers)	-							
	Saplings (2 numbers)	-							
	Palm								

Data sheet for destructive harvest samples & sub-samples

Dia means diameter

SI	Species	Scientific name	Reference	Volume equation	Wood Density
	Minjiri	Cassia siamea	Latif <i>et al</i> . 1995	$\ln(V_{ob}) = -8.602 + 2.4038 \times \ln(D)$	
1	Akashmoni	Acacia auriculiformis	Latif <i>et al</i> . 1995	ln(V)=-8.208+2.2389*ln(D)	0.70
2	Arjun	Terminalia arjuna	Rahman et al. 2001	ln(V)=2.222144*ln(G)-11.1885	
3	Banderhola	Duabanga grandiflora	Latif et al. 195b	ln(V)=2.4987*ln(D)-9.2929	0.54
4	Base dia- DBH	DipterocarpusTurbi natus	Latif et al. 1985b	DBH (cm)=0.792437*base dia (cm)	
5	Bhadi	Mise Sp.	Latif et al. 1985b	ln(V)=2.08627*ln(D)-7.574983	0.65
6	Bohera	Terminalia ballerica	Latif et al. 1985b	ln(V)=2.1338*ln(D)-8.0446	0.78
7	Chapalish	Artocarpuschaplash a	Latif et al. 1984c	ln(V)=2.24074*ln(D)-8.179774	0.49
8	Chundul	Tetramelesnudiflora	Latif et al. 1985b	ln(V)=2.0291*ln(D)-7.077637	0.36
9	Civit	Swintonia floribunda	Latif et al. 1985b	ln(V)=2.14002*ln(D)- 7.631146787	0.61
10	Dhakijam	Syzygiium grande (Plantations)	Latif et al. 1984b	$V = 0.00552016 \text{-} 0.0028213 \times \text{D} \text{+} \\ 0.00078431 \times \text{D}^2$	0.79
11	Dhakijam	Syzygiiumgrande (natural)	Latif et al. 1985b	V=- 0.275876+0.009951*D+0.000587 6*D^2	0.79
12	Eucalyptus	Eucalyptus camaldulesnsis	Latif et al. 1999	ln(V)=2.297689*ln(G)-11.177929	0.68
13	Gamar	Gmelina arborea	Latif et al. 1984c	ln(V)=2.1472*ln(D)-7.9022697	0.44
15	Garjan	DipterocarpusTurbi natus	Latif et al. 1984a	ln(V)=2.35556*ln(D)-8.5116354	0.78
16	Jackfruit	Artocarpus heterophyla	Latif&Zahir 2000	ln(V)=2.18203*ln(G)-11.06320	0.49
17	Jam	Syzigium cumini	Latif et al. 1985b	V=0.00506138D^2+0.00217385- 0.00111102*D	0.67
18	Jarul	Lagarastroemia Spp	Latif et al. 1985b	ln(V)=2.08627*ln(D)-7.574983	0.61
19	Kadam	Anthocephalus chinensis	Latif et al. 1985b	ln(V)=2.32592*ln(G)-11.6329	0.47
20	Kanak/Bana k		Latif et al. 1985b	ln(V)=1.6912*ln(D)-6.3428	0.72
21	Koroi	Albizia procera	Latif <i>et al</i> . 1999	ln(V)=2.463398*ln(G)-12.093533	0.73
22	Mahogany	Swietenia macrophylla	Latif et al. 1999	ln(V)=2.460647*ln(G)-12.045383	0.67
23	Mangium	Acacia mangium	Latif et al. 1993	$\ln(V_{ob}) = -8.209 + 2.2178 \times \ln(D)$	0.56
24	Mango	Mangifera indica	Latif&Zahir 2000	ln(V)=2.24506*ln(G)-11.27269	0.54
25	Neem	Azadracta indica	Latif and Zahir 2001	ln(V)=2.25814*ln(G)-11.33340	0.76
26	Pitraj	Aphanamixis polystachya	Latif et al. 1985b	ln(V)=2.4781*ln(D)-9.2157	0.54
27	Rain Tree	Rain Tree Samania saman L		ln(V)=2.5086408*ln(G)- 12.287524	0.59
28	Rubber wood	bber wood Heveabrazelenisis Zahir		ln(V)=-10.5628+2.1502*ln(G)	0.56
29	Sal	Shorearobusata	Latif et al. 1992	ln(V)=2.51789*ln(D)-9.1727759	0.8 2
30	Simul	Bombexceiba	Latif et al. 1985b	ln(V)=2.3088*ln(D)-8.4630	0.67
31	Sissoo	Dalbergiasisso	Latif et al. 1999	ln(V) = - 12.14678171+2.49978991×ln(G)	0.74

Appendix-II: List of volume equation and wood density

SI	Species	Scientific name	Reference	Volume equation	Wood Density
32	Teak/Shegun	Tectonagrandis	Latif et al. 1985a	ln(V)=2.12337*ln(D)-7.566916	0.61
33	Urium	Mangifera sylvastica	Latif et al. 1985b	ln(V)=2.337*ln(D)-8.5703	0.54
34		Mixed SPP	Latif et al. 1985b	ln(V)=2.08627*ln(D)-7.574983	0.67

PA and Land use	Live Trees CO2 (Mg/ha)	Dead Trees CO2 (Mg/h a)	Litter CO2 (Mg/h a)	Non- trees CO2 (Mg/h a)	Soil Carbo n (Mg/h a)	Total CO2 Mg/ha	PA Area (ha)	Total CO2 Gg of the PA
Chunati WS	103.8	0.2	8.9	10.5	23.1	146.4	8,319.8	1,218.0
Forest	149.6	0.0	14.0	12.3	22.0	198.0	506.5	
Degraded forest	75.4	0.2	7.4	6.4	27.1	116.6	5,872.7	
Plantation	139.4	0.3	8.8	20.4	17.1	186.0	361.1	
Settlement	132.6	0.5	6.8	2.7	20.6	163.2	981.4	
Agriculture	-	-	4.8	0.7	13.0	18.6	598.1	
Himchari NP	37.9	0.4	0.1	0.2	14.2	52.8	1,859.4	98.2
Forest	101.1	-	-	-	16.2	117.3	146.4	
Degraded forest	11.8	-	0.2	0.2	17.2	29.4	1,384.5	
Settlement	114.5	1.7	-	0.0	3.8	120.1	328.5	
Kaptai NP	222.0	3.3	5.0	1.0	27.2	258.5	5,089.9	1,315.6
Forest	276.8	8.4	8.0	2.2	27.3	322.7	3,785.7	
Degraded forest	57.9	0.3	2.6	0.6	27.2	88.8	968.0	
Plantation	316.9	2.0	5.0	0.4	27.1	351.4	41.8	
Settlement	123.5	2.9	1.7	0.9	26.4	155.4	271.0	
Agriculture	-	-	-	-	27.1	27.1	23.4	
Khadim NP	264.2	-	7.1	0.8	26.3	298.3	676.6	201.9
Forest	330.6	-	9.4	1.1	21.5	362.5	479.0	
Degraded forest	40.3	-	-	-	39.4	79.7	197.6	
Plantation	313.4	-	7.7	0.8	29.0	350.9	na	
Lawachara NP	278.1	4.0	8.9	1.5	42.1	322.9	2,955.2	954.4
Forest	411.0	3.3	11.4	0.8	44.2	470.7	1,909.6	
Degraded forest	25.8	25.3	6.4	4.1	37.0	98.8	509.2	
Plantation	241.1	0.3	8.0	1.8	40.7	291.9	na	
Settlement	308.8	-	-	-	41.8	-	309.6	

Bare Land	27.8	-	10.5	2.3	40.1	80.7	na	
Tea Garden	105.1	-	3.8	0.6	50.7	160.3	226.9	
Waterbodies								
Modhupur NP	195.5	-	6.4	0.8	32.2	234.8	8,261.1	1,939.6
Forest	238.6	-	7.7	0.7	30.5	277.6	2,233.3	
Plantation	147.1	-	4.3	0.3	37.1	188.9	578.1	
Settlement	138.6	-	5.9	0.3	18.3	163.1	2,871.6	
Agriculture	-	-	1.3	-	34.0	35.2	2,082.8	
Rubber	201.5	-	6.8	2.2	35.8	246.2	495.2	
Rema-kalenga WS	329.5	0.0	5.3	0.9	45.7	381.4	5,430.4	2,071.4
Forest	379.0	0.0	5.6	0.7	47.0	432.4	4,782.3	
Degraded forest	1.1	-	1.8	0.3	44.0	47.2	na	
Plantation	202.1	-	5.0	1.6	41.1	249.8	93.0	
Agriculture	37.5	-	-	-	42.9	80.4	555.1	
Satchari NP	219.1	0.3	11.5	1.0	33.9	265.8	1,610.4	428.0
Forest	259.4	0.4	13.8	0.9	39.3	313.7	952.8	
Degraded forest	79.6	-	5.1	1.4	38.1	124.1	656.9	
Plantation	247.0	0.3	12.9	0.8	31.5	292.5	na	
Agriculture	128.6	-	2.9	3.6	22.4	157.5	0.7	
Grand Total	192.6	1.0	6.8	3.7	30.3	233.5	33,797. 2	8,025.2

PA and Land use	Seedlin gs (N/ha)	Saplin gs (N/ha)	Live trees (N/ha)	Sum of Count of stump s	Stump s (N/ha)	Nos. of Tree Species	Nos. of trees	Spp. Richne ss Index
Chunati WS	4,366	2,165	1,035	256	23	7	537	0.04
Forest	8,412	3,752	1,321	55	26	7	135	0.07
Degraded forest	810	441	655	116	21	6	167	0.03
Plantation	9,886	4,989	1,745	68	26	6	209	0.04
Settlement	1,393	1,790	1,278	15	38	5	26	0.05
Agriculture	-	-	-	2	5			
Himchari NP	2,034	2,947	169	-	-	3	24	0.01
Forest	3,183	-	1,027	-	-	3	4	0.06
Degraded forest	2,546	3,939	60	-	-	3	5	0.01

Settlement	133	133	387	-	-	3		15	0.03
Kaptai NP	939	235	1,012	568	93		19	317	0.14
Forest	1,966	328	1,298	112	66	19		106	0.21
Degraded									
forest	140	187	316	255	150	11		28	0.06
Plantation	862	199	1,359	196	82	17		175	0.15
Settlement	398	398	828	5	25	5		8	0.1
Agriculture	-	-	-	-	-				
Khadim NP	884	796	954	11	12		3	40	0.03
Forest	1,326	531	1,017	9	15	3		29	0.04
Degraded									
forest	-	1,989	360	2	10	2		3	0.02
Plantation	-	-	1,768	-	-	1		8	0.02
Lawachara NP	3,130	4,881	1,426	78	25		18	228	0.08
Forest	4,775	3,382	1,976	37	31	18		120	0.14
Degraded									
forest	2,918	18,568	284	6	20	3		4	0.03
Plantation	2,255	4,178	1,319	35	29	5		90	0.04
Settlement	796	-	1,903	-	-	7		10	0.15
Bare Land	-	-	113	-	-				
Tea Garden	-	-	381	-	-	2		2	0.04
Water bodies					-				
Modhupur NP	30,312	4,847	1,835	64	12		9	567	0.04
Forest	53,184	7,666	2,500	58	19	9		372	0.04
Plantation	4,509	2,785	1,135	2	2	2		75	0.03
Settlement	4,775	1,061	1,290	4	13	4		20	0.06
Agriculture	-	-	-	-	-				
Rubber	455	-	1,204	-	-	2		100	0.02
Rema-Kalenga			,						
WS	10,678	2,961	1,466	227	36		13	498	0.1
Forest	12,118	3,321	1,602	144	31	13		408	0.12
Degraded									
forest	11,141	10,345	-	-	-	-		-	-
Plantation	6,366	1,347	1,195	83	64	7		89	0.06
Agriculture	-	-	160	-	-				
Satchari NP	3,104	1,711	895	48	24		7	92	0.06
Forest	5,093	2,706	1,059	20	40	7		27	0.08
Degraded									
forest	531	1,061	236	3	10	3		4	0.02
Plantation	3,183	1,592	1,045	25	23	7		59	0.06
Agriculture	-	-	393	-	-				
Grand Total	8,233	2,592	1,178	1,252	33			2303	0.07

Seedlin	Saplin	Live	
gs (N/ha)	gs (N/ha)	trees (N/ha)	Stump s (N/ha)
	gs	gs gs	gs gs trees

Chunati WS	4,366	2,165	1,035	23.06	1
Forest	8,412	3,752	1,321	26.19	1
Degraded					
forest	810	441	655	20.71	1.2
Plantation	9,886	4,989	1,745	26.15	1
Settlement	1,393	1,790	1,278	37.5	1
Agriculture					2
Himchari NP	2,034	2,947	169	-	2
Forest	3,183	-	1,027	-	2
Degraded					
forest	2,546	3,939	60	-	2
Settlement	133	133	387	-	3
Kaptai NP	939	235	1,012	93.11	4
Forest	1,966	328	1,298	65.88	4
Degraded					
forest	140	187	316	150	4
Plantation	862	199	1,359	81.67	4
Settlement	398	398	828	25	4
Agriculture					5
Khadim NP	884	796	954	12.22	3
Forest	1,326	531	1,017	15	3
Degraded		4 000	200	10	2
forest	-	1,989	360	10	3
Plantation	-	-	1,768	-	3
Lawachara NP	3,130	4,881	1,426	25.16	5
Forest	4,775	3,382	1,976	30.83	5
Degraded forest	2,918	18,568	284	20	5
Plantation	2,255	4,178	1,319	29.17	5
Settlement	796	4,170	1,903	29.17	6
Bare Land	790	-	1,905	-	6
Tea Garden			381		6
	-	-	301	-	
Water bodies	20 21 2	A 947	1 025	11.64	6
Modhupur NP	30,312	4,847	1,835		6
Forest	53,184	7,666	2,500	19.33	6
Plantation	4,509	2,785	1,135	1.67	6
Settlement	4,775	1,061	1,290	13.33	6
Agriculture					7
Rubber	455	-	1,204	-	7
Rema-kalenga WS	10,678	2,961	1,466	36.03	7
Forest	12,118	3,321	1,602	31.3	7
Degraded	12,110	3,321	1,002	51.5	1
forest	11,141	10,345	-	-	7
Plantation	6,366	1,347	1,195	63.85	7
Agriculture	0,000	<u>_,;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</u>	_,	00.00	8
Satchari NP	3,104	1,711	895	24	8
Sateman Nr	3,104	1,711	0,5	24	

	CSW	111
	Forest	21
	Degraded	
2	forest	56
	Plantation	26
	Settlement	4
	Agriculture	4
	HNP	27
	Forest	1
	Degraded	20
	forest	20
	Settlement	6
	KNP	61
	Forest	17
	Degraded forest	17
	Plantation	24
	Settlement	2
	Agriculture	1
	KhNP	- 9
	Forest	6
	Degraded	-
	forest	2
	Plantation	1
	LNP	31
	Forest	12
	Degraded	
	forest	3
	Plantation	12
	Settlement	1
	Bare Land	1
	Tea Garden	1
	Water bodies	1
	MNP	55
	Forest	30
	Plantation	12
	Settlement	3
	Agriculture	3
	Rubber	7
	RKW	63
	Forest	46
	Degraded	
	forest	1
	Plantation	13
	Agriculture	3
	SNP	20

Forest	5,093	2,706	1,059	40	8	Forest	5
Degraded						Degraded	
forest	531	1,061	236	10	8	forest	3
Plantation	3,183	1,592	1,045	22.73	8	Plantation	11
Agriculture					9	Agriculture	1
Grand Total	8,233	2,592	1,178	33.21	9	Grand Total	377

SI	Inventory team	Participants	Address	Cell no.
1	Team 1: Sylhet	Mr. Md. SarwarAlam	ACF, Wildlife Management and Nature Conservation Division, Moulavibazar;	1827127491
2	Team 1: Sylhet	Mr. Sujoy Subroto	NRM Facilitator, Rema-Kalenga WS, CREL	1717925945
3	Team 1: Sylhet	Mr. Krishna Kumar Gupta	Student;	1719432896
4	Team 1: Syl Technical support	Ms. SharmilaDhali	NRM Facilitator, Lawachara NP, CREL	1717963785
5	Team 2: Modhupur	Mr. Bashirul-Al-Mamun	ACF, Modhupur NP, Tangail Forest Division;	1712339356
6	Team 2: Modhupur	Mr. Md. Abu HanifaMehedi	NRM Facilitator, Satchari NP, CREL	
7	Team 2: Modhupur	Mr. Niamjit Das	Student;	1737052915
8	Team 2: MNP Technical support	Mr. PalashSarker	Monitoring Officer, Sylhet Region, CREL	1717217620
9	Team 3: Kaptai	Mr. Md. Anwar Hossain	ACF, Rangamati North Forest Division	1711487050
10	Team 3: Kaptai	Mr. Ekram Uddin Al- Amran	NRM Facilitator, Kaptai NP, CREL	1811535252
11	Team 3: Kaptai	Mr. Mohammed Abdullah Al Mahmud	Student;	1534850703
12	Team 3: KNP & CWS Technical Support	Mr. Abdullah Junayed	Monitoring Officer, Chittagong Region, CREL	1680660063
13	Team 4: Chunati	Mr. Md. KajalTalukder	ACF, Wildlife Management and Nature Conservation Division, Chittagong;	1711953992
14	Team 4: Chunati	Mr. RajibMahamud	NRM Facilitator, Jaldi, Chunati WS, CREL	1819066191
15	Team 4: Chunati	Mr. Faqrul Islam Chowdhury	Student;	1815350047
16	Team 5: Himchari	Mr. Md. G. M. Kabir	ACF, Cox's bazar South F. Division	1712140210
17	Team 5: Himchari	Mr. Alam Khan	NRM Officer, Cox's Bazar Region, CREL	1818152374
18	Team 5: Himchari	Mr. BablaMohajan	Student;	1818897806
19	Team 5: Himchari	Mr. Mahadee Hassan Rubel	Student;	1719002464
20	Team 5: HNP Technical support	Mr. Samiul Mohsanin	Monitoring Officer, Cox's bazar	1711964456

List of Participants for Hands-on Orientation on Forest Carbon inventory (18-20 Mar 2014)

	Himchari		Chunati		Kaptai		Modhupur		Satchari		RKWS		Lawachara		Khadim	
	Species	N	Species	N	Species	N	Species	N	Species	N	Species	N	Species	N	Species	N
1	Aam/Mango	6	Aam/Mango	2	Achargola	2	Akashmoni	63	Akashmoni	6	Acacia	10	Aakashmoni	48	Champa	3
2	Amra	1	Akashmoni	11	Achila	4	Ajoki	4			Agar	6	Aam	1	Chikrashi	2
3	Arjun	1	Achar	1	Agar	5	Ajoli	1	Amra	1	Akashmoni	6	Agor	3	Dhaki Jam	2
4	Chundul	1	Acharrass	2	Aam	4	Aam	1	Awal	4	Aam	1	AWAL	4	Dumur	1
5	Coconut	5	Bamboo	1	Asar	1	Bhahula	1	Belpoi	1	Amloki	2	Balpoi	1	Jam	1
6	Gujibula	1	Bormala	2	Ashok	1	Bohera	2	Biskut	1	Amra	4	Bohera	3	Jeol	4
7	Jam	2	Bora Gach	1	Badi	9	BilatiGab	1	Bohera	1	Awal	10	Boira	4	Kakra	1
8	Kanthal	4	Borta	1	Barala	1	Bislong	2	Bon Kodom	1	Badrak	5	Bollar	1	Sal	8
9	Kecho	1	Bura	2	Batna	17	Bohara	2	Chapalish	10	Bal	1	Bollos	1	Teak	#
10	Koroi	1	Chapalish	2	Bohera	4	Bokain	1	Civit	1	Baranga	4	Bon Jambara	1	Udal	2
11	Mouch	1	Chatian	1	Bon Badam	1	Bot	1	Dumur	5	Bel Poi	3	Bon Jamil	2	(Blank)	
12			Dewri	1	Bon Jalpai	1	Datoi	1	Eucalyptas	8	Bellom	1	Bonak	9	Grand Total	#
13	Total	24	Dewri	9	Bormala	1	Dhapor	1	Gamar	2	Bohera	34	Bonak	1		
14			Eucalyptus	1	Buikumra	1	Jam	6	Jam	1	Bon Jolpai	1	Bonjamir	1		
15			Gamar	2	Bura	1	Jarul	4	Jarul	1	Bon Lichu	3	BorJam	1		
16			Garjan	4	Chapalish	4	Badi	1	Jhau	8	Bon Mala	3	Boro Jam	1		
17			Guava	1	Chundul	1	Kaikka	1	Badi	1	Bon Pisli	3	Boroi	1		
18			Jam	2	Civit	2	Kanchan	1	Kankar	1	Bon Supri	6	CHALTA	2		
19			Kachua	3	Darmara	9	Khapaisa	1	Kawa Jam	1	Bonag	7	Chapalish	23		
20			Kathalmali	1	Dhakijam	2	Khapaisha	1	Kolapati	1	Bonak	25	Dewa	2		
21			Kau	1	Dumur	24	Khathal	2	Koroi	1	Bonmala	1	DhakiJam	1		
22			Kettoma	1	Gamar	16	KhudiJam	2	Kurcha	2	Bot	4	Dumur	10		

Appendix –V: List of Species and tree counts at each PA

	Himchari		Chunati		Kaptai		Modhupur		Satchari		RKWS		Lawachara		Khadim	
	Species	N	Species	N	Species	N	Species	N	Species	N	Species	N	Species	N	Species	N
23			Koroi	1	GandhoNarikel	1	Mahogoni	1	LalDumur	2	Bot Awal	1	Ekush	3		
24			Kuruk	2	Garjan	7	Na	1	MaitaAwal	1	Boti Jam	1	Gamar	1		
25			Larchara	1	Goda	2	Neur	3	Malakana	1	Butia	1	Garjan	9		
26			Mehogoni	1	Gun	2	Rubber	99	MalkanaKoroi	2	Butu Jam	2	Gondoi	1		
27			Naricha	1	Gutgutia	6	Rubber	1	Mangium	4	Champa	3	GuaChamir	2		
28			PutiJam	2	Harba	4	Sal	##	Pichla	1	Chundul	1	Guilli	2		
29			Puttigass	1	Hatipita	1	Sasra	1	Sada Jam	1	Chapalish	45	Gulli	1		
30			Gazri/Sal	1	Hijja	1	Shida	1	ShilKoroi	3	Chatim	1	Tejpata	1		
31			Teak/Segun	1	Jam	4	Shindhuria	3	Shimul	1	CholaMugur	4	Hingra	1		
32			Shiyalkata	1	Jarul	12	Shinduria	2	Teak	11	Dewa Cham	6	JAM	6		
33					Kadam	2	Singra	1	Unknown	5	Dishi	1	Jambura	3		
34			(Blank)		Kalibol	1	Tal Gach	1	Varenga	2	Dumur	9	Jao	1		
35			Grand Total	64	Kerong	3	Tarokata	1	(Blank)		Fula Jam	1	Jarul	6		
36					Komkui	1	Teak	26	Grand Total	92	Gamar	12	Jhara	2		
37					Koroi	6	Telsur	1			Garjan	22	JIGA	2		
38					Kumira	1	Eucalyptus	1			Gorug	1	Jolpai	1		
39					Kuruch	1	Badi	1			Guburia	1	Kakra	9		
40					Lotkon	4	(Blank)				Hargoja	22	KaloDumur	1		
41					Menda	3	Grand Total	##			Hingra	1	KATHAL	3		
42					Minjiri	1					Huria	3	KAW	1		
43					Moch	4					Jalna	4	Khami	1		
44					Modon	3					Jam	21	Koroi	1		
45					Pasula	1					Jarul	17	Korom	1		
46					Pechigola	1					Jolpai	1	Kuma	1		
47					Pharula	1					Kadam	3	Kumari	1		
48					Pitali	3					Kaimala	1	La1 Dumur	1		
49					Pitraj	2					Kakra	16	LAL DUMUR	1		

	Himchari		Chunati		Kaptai		Modhupur		Satchari		RKWS		Lawachara		Khadim	
	Species	N	Species	N	Species	N	Species	N	Species	N	Species	N	Species	N	Species	N
50					Rain Tree	1					Kala Kurcha	1	LalGuia	1		
51					RoktoVerala	4					Kata Kuar	1	Lud	1		
52					Rongi	5					Kaw	3	Malakana	3		
53					Rongkat	1					KewaTudi	4	Mango	3		
54					Sheon	1					Khami	5	Mehogoni	2		
55					Sheori	2					Koimela	2	Mengivn	4		
56					Shuruj	5					Koroi	5	MERGIUM	2		
57					Simul	1					Kudi Jam	3	MOSKOR	1		
58					Teak/Segun	89					Kumini	1	Naor	2		
59					Tejbol	1					Kumli	1	Pahari Jam	1		
60					Udal	5					Kurcha	1	Pichni	1		
61					Verala	4					LalDumur	9	Pichondi	2		
62					(Blank)						Lali	1	Pist	1		
63					Grand Total	308					Lohakat	7	Pisti	2		
64											Lud	6	Pittosul	1		
65											Mandar	1	Rubber	1		
66											Mangium	3	Rata	3		
											Mehogoni	1	Rata/Toon	2		
											Mini Jarul	8	ROKTON	1		
											Neur	3	Rongi	1		
											OloiPati	1	SadaAwal	2		
											Orish	1	Sada Jam	1		
											Pisli	2	Shimul	1		
											Pisti	3	Singra	2		
											Pitali	2	Sonalu	1		
											Puria	2	Eucalyptus	4		
											Rangi	1	(Blank)			

Himchari		Chunati		Kaptai		Modhupur		Satchari		RKWS		Lawachara		Khadim	
Species	N	Species	N	Species	N	Species	N	Species	N	Species	N	Species	N	Species	N
										Rata	8	Grand Total	230		
										Rongi	2				
										SadaPati	1				
										Sal	15				
										Sheowra	5				
										Shimul	3				
										Sit	1				
										Sopri Awal	1				
										Tairol	1				
										Tatul	1				
										Teak	33				
										Thona	4				
										V.Awal	1				
										Vetkoi	1				
										Grand Total	498				